Common viral related neuropathic pain conditions
Neuropathic pain is defined by the International Association for the Study of Pain as "pain caused by a lesion or disease of the somatosensory nervous system,"31 and is recognized as being mechanistically distinct from nociceptive pain and nociplastic pain.32 33 Viral infections can lead to neuropathic pain by creating lesions in the peripheral or central nervous system,32 34 producing cytokines that sensitize nociceptors,35 or eliciting an immune response that attacks organ systems.12–14 Although viruses can also cause nociceptive pain (eg, arthritis), pathogenesis is varied and pathogen specific.36
Varicella zoster virus
Varicella zoster virus is responsible for chickenpox and shingles. After a primary infection, it lies dormant in a dorsal root or cranial ganglion and reactivates upon a decline in immunity. Pain can be spontaneous, paroxysmal, or evoked (eg, allodynia), and acute reactivation typically causes nociceptive (vesicular rash) and neuropathic (acute radiculitis) pain.
Postherpetic neuralgia is the most common and one of the most serious complications of acute infection with varicella zoster virus, and is defined as pain persisting more than 90 days after the onset or healing of the vesicular rash.37 Mechanisms include nerve root inflammation and ectopic discharges, peripheral sensitization, and central sensitization (eg, loss of inhibitory neurons, glial cell activation), deafferentation in the affected dermatome, and central nervous system reorganization (eg, alterations in brain metabolism, decreased grey matter, and sympatho-afferent coupling).38
Postherpetic neuralgia can eventually develop in approximately half of the individuals infected with varicella zoster virus.37 Risk factors include older age, prodromal pain, severe acute pain or rash, marked immunosuppression, and diabetes.37 39 40 Because greater acute pain and rash severity might indicate increased neural damage,40 41 treatment of varicella zoster virus and resultant acute pain could reduce the incidence of postherpetic neuralgia. Strategies have included antiviral treatment, steroids, non-steroidal anti-inflammatory drugs, neuropathic analgesics, local anesthetics, epidural steroids, and neuromodulation.42–46 However, these treatments have yielded mixed results for the prevention and treatment of postherpetic neuralgia. Vaccination is the most effective means of preventing postherpetic neuralgia, reducing risk by up to 67%, and vaccinated patients who do develop the disorder have less severe symptoms.47
Human immunodeficiency virus (HIV)
More than 30 million individuals worldwide are infected with HIV type 1 (HIV-1) or 2 (HIV-2),48 although this number is likely an underestimate because of poor access to healthcare among populations at risk.49 50 Six strains of HIV-1 account for the vast majority of infections globally.51 HIV-2 is characterized by lower transmissibility and is uncommon outside West Africa.51 52
With the development of antiretroviral treatments, the prognosis of HIV infection has markedly improved and many patients have a near-normal lifespan. However, antiretroviral drugs rarely eliminate the virus entirely. As a consequence of chronic infection, more than 50% of individuals with HIV develop chronic non-cancer associated pain.53 54 Painful peripheral neuropathy is one of the most common symptoms, with the most form having a characteristic stocking-and-glove distribution.53 55 HIV can directly cause neural damage via certain components of its viral envelope, such as glycoprotein 120, that induce axonal degeneration, inflammatory cytokine release, and increased oxidative stress.56 57 Earlier generations of antiretroviral drug treatments were associated with distal polyneuropathies,53 possibly through the upregulation of inflammatory cytokines, microglial activation, and direct neuroinflammation.58 59 Cohort studies performed before the advent of highly active antiretroviral treatments found an increased incidence and severity of polyneuropathy in individuals who are immunosuppressed and with higher viral loads, with some evidence that effective treatment might be associated with improvement in pain and other neurological symptoms.60 61
HIV infection is also associated with a greater risk of concomitant nociceptive or nociplastic pain. Patients with HIV commonly report abdominal pain, chest pain, musculoskeletal pain, and headaches,53 55 and are at higher risk of developing fibromyalgia.55 How HIV directly leads to these symptoms is unclear, but mechanisms similar to the development of neuropathic pain, including central and peripheral sensitization and psychosocial factors (eg, social isolation or stigma), are likely to be involved.55
Herpes simplex virus
The vast majority of people worldwide are infected with either herpes simplex virus type 1 (HSV-1) or 2 (HSV-2).62 Infection occurs through contact with mucosal surfaces or abraded skin. Although acute symptoms might occur,63 most individuals are asymptomatic.62 HSV-1 and HSV-2 enter sensory ganglia and establish lifelong latency.62 64 Cycles of dormancy and reactivation can occur, most commonly at mucocutaneous sites63 64 (eg, vesicular lesions at the vermilion border of the mouth, herpetic whitlow in medical and dental professionals’ fingers), often with prodromal burning, itching, or pain.63
Highly morbid painful neurological manifestations can occur. HSV-1 is associated with encephalitis63 65 and herpes keratitis, which presents with ocular pain and is one of the leading causes of infectious blindness in the world.66 Owing to its ability to establish latency in the cranial ganglia, HSV-1 might also lead to Bell’s palsy, which is sometimes characterized by pain.65 HSV-2 is associated with meningitis, ascending thoracic or lumbosacral myelitis, and lumbosacral radiculitis, and might have a synergistic relation in causing these symptoms in patients with HIV.65 HSV-1 and HSV-2 might also cause central spontaneous pain via glial activation, although the incidence and mechanism(s) are unclear.64 Antiviral drug treatments could reduce the severity and duration of symptoms, but do not eradicate the virus.
Hepatitis C virus
Hepatitis C virus is a member of the Flaviviridae family with up to 190 million individuals worldwide infected.67 68 The virus replicates up to 10 trillion copies per day without a proofreading mechanism, leading to numerous genetic variants that prevent the host’s immune system from eradicating it.67 Hepatitis C virus has the distinction of being the hepatitis virus with the most known extrahepatic manifestations,69 including arthralgia, lymphoma, type diabetes, and chronic kidney disease. Most of these conditions are independently associated with chronic pain.
The virus is also the leading cause of mixed cryoglobulinemic vasculitis, which can lead to a distal sensory or sensorimotor peripheral neuropathy that presents with painful paresthesias.69 70 Peripheral neuropathy can occur independently of cryoglobulinemia and might be more strongly associated with older age and the duration of infection with hepatitis C virus.68 71 Evidence also suggests that the virus can elevate levels of inflammatory cytokines such as interleukin 6, contributing to hyperesthesia and possibly centrally mediated pain.72
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Covid-19 is associated with acute pain in 20% to >60% of patients admitted to hospital, with the most common complaints being myalgia or arthralgia, headache, and sore throat (>25%); followed by chest pain, spinal pain, abdominal pain, and non-headache neurological symptoms.73–75 These symptoms can result from a combination of factors, including a hypervigilant immune response, fever, deconditioning, and direct viral invasion (arthralgia, myositis, myocarditis or chest pain).75 76 Although SARS-CoV-2 is not primarily neurotropic, the virus binds to angiotensin converting enzyme 2 receptors in the central and peripheral nervous system, and has been linked to myelitis, Guillain-Barré syndrome, and peripheral neuropathy.75 77 As with other viral mediated illness, neuropathic pain can be triggered by immune mechanisms, antiviral treatment, or direct viral invasion, and carries a higher incidence in those individuals with pre-existing risk factors (eg, diabetes).78 About 5-15% of patients admitted to hospital with covid-19 will present with abdominal pain, which might be secondary to viral binding to angiotensin converting enzyme 2 receptors in the gastrointestinal tract, lymphadenopathy, referred pain from the lungs, or visceral distension.75
In one observational study, the presence of acute pain was paradoxically found to mitigate against death and intensive care, which was attributed to the activation of neurotransmitters involved in pain modulation and distraction.74 In another case-control study, patients who experienced myalgia during acute covid-19 had a greater likelihood of having musculoskeletal pain seven months after covid-19 infection that those who did not have myalgia (odds ratio 1.41, 95% confidence interval 1.04 to 1.90).79 Several studies have found chest pain, headache, myalgias, and arthralgias to be present in over 20% of surviving patients with covid-19, 60 days after infection, with neuropathy, spinal pain, and abdominal pain reported less frequently.80 Since patients in these studies did not have measurable viral loads, the cause of these symptoms is likely immunological or a psychological triggering event.5