Advances in the diagnosis and early management of gestational trophoblastic disease =================================================================================== * Caroline M Joyce * Brendan Fitzgerald * Tommie V McCarthy * John Coulter * Keelin O'Donoghue ## Abstract Gestational trophoblastic disease describes a group of rare pregnancy related disorders that span a spectrum of premalignant and malignant conditions. Hydatidiform mole (also termed molar pregnancy) is the most common form of this disease. Hydatidiform mole describes an abnormal conceptus containing two copies of the paternal genome, which is classified as partial when the maternal genome is present or complete when the maternal genome is absent. Hydatidiform mole typically presents in the first trimester with irregular vaginal bleeding and can be suspected on ultrasound but confirmation requires histopathological evaluation of the products of conception. Most molar pregnancies resolve without treatment after uterine evacuation, but occasionally the disease persists and develops into gestational trophoblastic neoplasia. Close monitoring of women after molar pregnancy, with regular measurement of human chorionic gonadotrophin concentrations, allows for early detection of malignancy. Given the rarity of the disease, clinical management and treatment is best provided in specialist centres where very high cure rates are achievable. This review looks at advances in the diagnosis and early management of gestational trophoblastic disease and highlights updates to disease classification and clinical guidelines. Use of molecular genotyping for improved diagnostic accuracy and risk stratification is reviewed and future biomarkers for the earlier detection of malignancy are considered. * Pregnancy complications * Pathology * Medical oncology * Biochemistry * Genetics ## Introduction Gestational trophoblastic disease (GTD) describes a heterogeneous group of disorders that arise from abnormal proliferation of placental trophoblastic tissue (box 1). Diagnostic classification spans the pre-malignant conditions of complete hydatidiform mole (CHM) and partial hydatidiform mole (PHM) to the malignant conditions of invasive mole, choriocarcinoma, placental site trophoblastic tumour (PSTT) and epithelioid trophoblastic tumour (ETT), collectively known as gestational trophoblastic neoplasia (GTN) (figure 1). Both complete and partial moles have the potential for malignant transformation but the risk of GTN is higher for CHM (15-20%) than for PHM (0.5-1%)(table 1).1–3 Maternal age and history of a previous hydatidiform mole are two established risk factors for molar pregnancy. Hydatidiform moles are classified as complete or partial based on their morphology and genetic profile. Box 1 ### Glossary of abbreviations GTD=gestational trophoblastic disease. GTN=gestational trophoblastic neoplasia. CHM=complete hydatidiform mole. PHM=partial hydatidiform mole. PSTT=placental site trophoblastic tumour. ETT=epithelioid trophoblastic tumour. ![Figure 1](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F1.medium.gif) [Figure 1](http://bmjmedicine.bmj.com/content/1/1/e000321/F1) Figure 1 Gestational trophoblastic disease (GTD) classification according to the WHO 2020 Classification of Female Genital Tumours.76 PSN=placental site nodule; EPS=exaggerated placental site reaction; GTN=gestational trophoblastic neoplasia; ETT=epithelioid trophoblastic tumour; PSTT=placental site trophoblastic tumour View this table: [Table 1](http://bmjmedicine.bmj.com/content/1/1/e000321/T1) Table 1 Typical characteristics of complete and partial hydatidiform moles Most cases of GTN occur after molar pregnancy but they can also occur after any gestational event, including miscarriage and ectopic or term pregnancies. GTN is the most curable of all gynaecological malignancies with cure rates approaching 100%, even in the presence of metastatic disease.3 The increased use of ancillary techniques has improved the accuracy of GTD classification and risk stratification based on morphology. This review focuses on the diagnosis and early management of GTD over the past decade and we direct the reader to other publications for expert opinion on the chemotherapeutic management of GTN.4–8 ## Sources and selection criteria We searched PubMed, Medline, and CINAHL (EBSCO) for articles written in English and published from 1 January 2011 to 31 December 2021, using the search terms “gestational trophoblastic disease,” “hydatidiform mole,” “molar pregnancy,” and “gestational trophoblastic neoplasia.” We considered articles in peer reviewed journals and included articles based on study quality. We predefined the priority of study selection according to the level of evidence (clinical practice guidelines, systematic reviews and meta-analysis, cohort studies, and expert opinion). We consulted clinical management guidelines and expert reviews on this topic and included highly cited studies and those of historical significance. Relevant publications outside of the specified time were considered based on a review of bibliographies and expert opinion and the review bibliography was updated to 1 September 2022. Box 2 ### Genetic terminology Diandric=two copies of the paternal genome. Digynic=two copies of the maternal genome. Monogynic=one copy of the maternal genome. Androgenetic=paternal derived genome. Endoreduplication=replication of the nuclear genome without mitotic cell division. Diploidisation=conversion of a polyploid genome back into a diploid genome through a process of reduction of the duplicated genome. Genomic imprinting=a mechanism of silencing genes by DNA methylation, resulting in gene expression that is specific to one parent. Parental conflict hypothesis=a theory that imprinting provides a selective advantage in reproduction, such that placental specific genes are paternally imprinted and maternally expressed. ## Incidence International comparisons are difficult owing to the paucity of centralised registries worldwide, combined with an under-reporting of cases to registries, variation in case definition, and absence of a consensus based denominator.9–11 Incidence rates are typically derived from a mixture of live births, pregnancies, or deliveries but the total number of conceptions, although difficult to acquire, would be more inclusive.12 The incidence of hydatidiform mole varies worldwide with rates of 1-2 per 1000 pregnancies in Europe and North America compared with 10 per 1000 pregnancies in India and Indonesia.11 13 The incidence of GTD in the UK is one in 714 live births but incidence varies according to ethnic group, with the highest incidence reported in women of Asian descent.14–16 Genetic, social, cultural, and dietary factors might be relevant to GTD incidence. Of note, GTD frequency is higher in regions of the world where malnutrition is common.17 18 In the UK, the incidence of molar pregnancy is about one in 600 conceptions and the prevalence of PHM is higher than CHM at a ratio of 3:1.2 19 Prevalence of CHM is age dependent with higher frequencies at the lower and upper ends (<16 years and >40 years) of reproductive age.2 3 Choriocarcinoma is the most aggressive form of GTN with a reported incidence of one per 40 000 pregnancies in Europe and North America compared with 9.2 per 40 000 pregnancies in South East Asia. 11 ,20 In 2017, a systematic review of 121 case reports showed that 30% of choriocarcinomas had metastasised at the time of diagnosis.21 In April 2020, a larger UK based study of 234 cases reported metastasis in more than 50% of women with non-molar derived choriocarcinoma.22 Although most invasive moles originate from a CHM, only 25% of choriocarcinoma and 25% PSTT and ETT derive from a molar pregnancy.23 24 The risk of developing choriocarcinoma after a molar pregnancy is higher for CHM (2–3%) than PHM (<1%).25 26 Hence, gestational choriocarcinoma should be considered in all premenopausal women with metastases of an unknown primary.27 PSTT is a very rare form of GTN with an incidence of one in 100 000 deliveries in the UK, and ETT is even rarer.28–30 Owing to their rarity, PSTT and ETT are not discussed in detail in this review and readers are directed to other resources for details of their diagnosis and management.31–34 ## Clinical overview Women with a molar pregnancy usually present with irregular vaginal bleeding in the first trimester. An ultrasound scan can identify most CHMs (88%) but only detects some PHMs (56%), presenting a diagnostic challenge.35 Although sonography might be suggestive of a molar pregnancy, histopathological examination of the products of conception is the gold standard for the diagnosis of molar pregnancy.36 In CHM, human chorionic gonadotrophin (hCG) might be inappropriately high and reach concentrations of more than 100 000 IU/L (table 1). A review of 180 cases presenting to the New England Trophoblastic Disease Centre over a 20 year period showed a reduction in the gestational age at diagnosis of CHM from 12 weeks to 9 weeks gestation.37 Earlier diagnosis of GTD has led to changes in clinical presentation with women now rarely presenting with anaemia, hyperemesis, pre-eclampsia, or hyperthyroidism.38 39 The diagnosis of GTN is largely based on a combination of obstetric history and elevated concentrations of hCG.40 After molar pregnancy, plateaued or rising hCG concentrations are indicative of GTN. All forms of GTN (excluding PSTT and ETT) are highly vascular and a biopsy is not recommended because of the risk of a life threatening haemorrhage. Identification of the origin of choriocarcinoma can be challenging and genetic profiling can help to differentiate gestational from non-gestational choriocarcinoma, with non-gestational choriocarcinoma having a worse prognosis. Obstetric management of molar pregnancy involves uterine evacuation and histopathological examination of the products of conception. Follow-up serum or urine hCG monitoring is done until hCG values return to within the normal range. hCG is an ideal biomarker for GTD surveillance as its concentration accurately reflects disease burden. Most women with molar pregnancy do not require further treatment following uterine evacuation of the products of conception. However, some women develop disease persistence and progress to malignant disease requiring chemotherapy or further surgical intervention. ### Twin pregnancy A twin pregnancy of a CHM with a coexisting viable fetus is rare, occurring in one in 20 000-100 000 pregnancies.41 In these cases, the most common combination is a CHM and normal fetus.42 A UK study of 77 twin CHM pregnancies reported a live birth rate of 40% and found that the risk of GTN did not increase beyond the first trimester, obviating the need for early termination of pregnancy.41 A subsequent restrospective cohort study of 75 twin CHM pregnancies at the same centre reported even higher live birth rates (51%). This study also reported a higher malignancy risk in CHM twin (20%) pregnancies than in CHM (16%) pregnancies without a co-twin.43 Another larger multicentre cohort study reported a slightly higher malignancy risk (27%) in CHM twin pregnancies.44 45 A systematic review of obstetric outcomes in CHM twin pregnancies showed a higher risk of perinatal complications and low live birth weight with a third of the women progressing to GTN.46 Multidisciplinary management of these pregnancies in specialist centres is recommended to ensure early detection of pregnancy complications.14 ### Risk factors for the development of gestational trophoblastic disease Potential risk factors for the development of molar pregnancy include ethnicity, maternal age, and history of a hydatidiform mole.19 47 48 As previously mentioned, molar pregnancy is more prevalent in women at the lower and upper ends of reproductive age (<16 and >40 years). Adolescents (ages 13-16 years) have a slightly increased risk (1:450) of molar pregnancy, which increases to 1:157 (40 years of age), and rises sharply to 1:8 (≥50 years of age).2 9 47 Most molar pregnancies are sporadic but a history of hydatidiform mole increases the risk of a subsequent mole, which is often the same type as the index mole.49–51 The risk of a second molar pregnancy is about 1% and this risk is greater for CHM than PHM. The risk increases to 15-20% after two hydatidiform moles.4 50 Of note, the risk is independent of the male partner, suggesting an underlying defect in oocyte function.52 Supporting this concept, some recurrent hydatidiform moles have an inherited methylation defect in a gene (*NLRP7*) associated with oocyte maturation and placental development.53 54 Evidence of oocyte defects in other species has also been reported. Female mice with an inherited meiotic abnormality in their oocytes (*MEI1*) produce androgenetic zygotes by extruding all maternal chromosomes and their spindles into the first polar body, and a similar mechanism could exist in humans.55 Recent evidence suggests that women who have early diagnosis of PHM as their first gestational event are more likely to develop postmolar GTN.56 Studies have postulated a link in some countries between deficiency of carotene (vitamin A precursor) and a higher incidence of CHM.57 58Rodent studies have also shown that diet can reset the genetic imprint.59 Deficiency of vitamin A or folates in early gestation (18-21 days) is associated with the absence of placental villous vascularity, as seen in CHM.60 Hispanic women have a substantially lower risk of developing GTN after CHM than white women, suggesting a protective role for environmental or genetic factors.61 ## Genetic classification of a hydatidiform mole The genetic origin of hydatidiform mole is complex (figure 2). CHMs have a purely androgenetic genome. They contain 46 chromosomes (diploid) with two copies of the paternal genome (diandric) and no contribution from the maternal genome (box 2). Heterozygous dispermic CHMs are clinically more aggressive than homozygous monospermic CHM and have a significantly higher risk of neoplastic transformation.62 These moles result in higher mean hCG concentrations and a threefold increased risk of progression to GTN.62–64 Rare cases of tetraploid CHM also exist and require the same close surveillance as diploid CHM.65 PHMs have 69 chromosomes (triploid) and contain two paternal (diandric) and one maternal (monogynic) genome. Rare triandric tetraploid PHMs have been reported, which appear to arise from fertilisation of an ovum by three different sperm.66 ![Figure 2](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F2.medium.gif) [Figure 2](http://bmjmedicine.bmj.com/content/1/1/e000321/F2) Figure 2 Genetic origin of hydatidiform moles. (A) CHMs have a diploid genome. Most CHMs (80-90%) arise from fertilisation of an empty ovum by a haploid sperm, which undergoes endoreduplication to result in diploidy (homozygous monospermy). Some CHMs (10-20%) result from fertilisation of the empty ovum by two sperm resulting in diploidy (heterozygous dispermy). (B) PHMs have a triploid genome. Most PHMs (>95%) arise from fertilisation of a single oocyte by two different sperm (heterozygous dispermic). (C) Familial recurrent hydatidiform moles due to biallelic variants in maternal effect genes (*NLRP7* or *KHDC3L*) result in biparental recurrent CHMs. CHM=complete hydatidiform mole; PHM=partial hydatidiform mole ### Familial recurrent hydatidiform mole Familial recurrent hydatidiform mole is a rare autosomal recessive disorder associated with a predisposition to molar pregnancy.67 These recurrent CHMs have a diploid biparental origin and the inheritance of biallelic variants in maternal effect genes (*NLRP7* or *KHDC3L*) disrupts genomic imprinting.68 69 These genes are normally expressed in the oocyte and support embryonic development until gene expression in the embryo becomes active.68 In Mexico, a study of 44 unrelated women with at least two hyatidiform moles suggested a founder effect in *NLRP7* (L750V) with most cases occurring in consanguineous families.70 Familial recurrent CHM should be suspected in women presenting with two CHMs and genetic analysis should be requested to determine recurrence risk.71 Women with familial recurrent hydatidiform mole usually require in vitro fertilisation with ovum donation to help them have a normal pregnancy.53 Notably, a UK study of 166 women with at least two molar pregnancies found that one in 640 women registered with a complete mole had familial recurrent CHM.50 ### Origin of hydatidiform mole formation Genomic imprinting is a term used to describe the parental specific expression of certain genes. Some genes are imprinted (suppressed) when paternally inherited and expressed when maternally inherited and vice versa. The parental conflict hypothesis was proposed to explain genomic imprinting in the placenta, whereby placental specific genes are paternally imprinted and maternally expressed.72 Consistent with this hypothesis, the lack of a maternal genome and over-representation of the paternal genome in CHM results in impaired genomic imprinting and proliferation of the villous trophoblast.73 Several theories have emerged to explain the origin of hydatidiform moles. One theory is that complete moles originate from an empty ovum, which is then fertilised by one or two sperm (figure 2).74 However, the finding of rare CHMs with retained maternal chromosome 11 suggests that the ovum is not completely devoid of all maternal DNA.73 An alternative theory proposed by Golubovsky postulates that all hydatidiform moles originate from the fertilisation of a normal ovum by two sperm to create a triploid conceptus. A complex postzygotic event then excludes the maternal genome and results in diploidisation to create a CHM.74 75 ## Pathological classification According to the WHO 2020 Classification of Female Genital Tumours, GTD can be subdivided into molar pregnancies or hydatidiform moles, GTN, tumour-like (non-neoplastic) lesions, and abnormal (non-molar) villous lesions.76 The pathogenesis of GTD is unique as the maternal tumour arises from gestational tissue rather than maternal tissue.77 Histopathological classification of products of conception into CHM, PHM, and non-molar gestations can be challenging based on morphology alone, and ancillary techniques (eg, immunohistochemistry, ploidy analysis, and molecular genotyping) are used to aid diagnosis. Placental site nodules and exaggerated placental site reactions are classified as benign tumour-like trophoblastic lesions. These lesions usually present as incidental findings in tissue after hysterectomy or endometrial biopsy. Placental site nodules are gestational tissue remnants left in the uterine wall that do not fully regress and disappear after a normal pregnancy.40 Larger placental site nodule-like lesions with atypical histopathological features are described as atypical placental site nodules. A retrospective review of atypical placental site nodules in one centre in the UK recorded neoplastic transformation in three (14%) of 21 cases within 16 months of diagnosis.78 As a result, women with atypical placental site nodules are registered with GTD centres, have central pathology review, hCG monitoring, and are offered a hysterectomy if deemed appropriate.40 Choriocarcinoma can be gestational or non-gestational and both have different routes of metastasis and treatment regimens. Non-gestational choriocarcinoma can be somatic or derived from the germ cell and has a high propensity for metastasis.79 Use of molecular genotyping to confirm the absence of paternal DNA can lead to an accurate classification of non-gestational choriocarcinomas.80 The diagnosis of CHM, PHM, placental site nodule, and atypical placental site nodule is made on the basis of histopathological confirmation.14 In contrast, diagnosis of GTN does not usually rely on histopathological confirmation as biopsies are not always available. The treatment of invasive mole and choriocarcinoma is often initiated on the basis of a rising hCG level even in the absence of other clinical evidence of disease recurrence.81 ## Pathological diagnosis Earlier clinical diagnosis of GTD is now possible due to improved ultrasound sensitivity but it often makes pathological differentiation of early CHM and PHM from non-molar gestations more challenging. The features of a mole are more subtle at early gestation and non-molar pregnancies, which often feature genetic abnormalities, can show morphological appearances that overlap to varying degrees. As a result, ancillary techniques are often required to assist morphological diagnosis. Morphologically, the classical appearance of CHM is characterised by the presence of a diffuse population of enlarged, hydropic villi with cistern formation. Fetal tissue is generally absent. Villi are irregular with formation of trophoblast pseudoinclusions. Non-polar or circumferential proliferation of villous trophoblast is prominent and the included extravillous trophoblast shows cytological atypia (figure 3). In CHM diagnosed in the first trimester, villous enlargement and trophoblast proliferation can be less developed and diagnosis is more challenging. In these cases; useful diagnostic features include the presence of villi with bulbous, cauliflower-like or knuckle-like outlines. These villi often have abnormal dense, blueish, myxoid stroma with prominent karyorrhectic nuclear debris.73 82 ![Figure 3](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F3.medium.gif) [Figure 3](http://bmjmedicine.bmj.com/content/1/1/e000321/F3) Figure 3 Complete hydatidiform mole. (A) In this macroscopic image of a product of conception, extensive formation of vesicles is evident giving a bunch of grapes effect. (B) The villous population is diffusely abnormal with numerous enlarged hydropic villi (16X). (C) The villi in this view are highly irregular and most show non-polar or circumferential trophoblast hyperplasia (50X). (D) In this early complete hydatidiform mole, the central villous shows the typical cauliflower-like outline with bulbous, knuckle-like projections (50X). (E) On higher magnification this early complete hydatidiform mole has abnormal, dense, myxoid stroma with prominent stromal karyorrhexis (400X). (F) p57 immunohistochemistry shows loss of staining in villous cytotrophoblast and stromal cells with preservation of staining in extravillous trophoblast (upper left) (100X) In contrast to CHM, PHM is characterised by a mixed population of enlarged hydropic villi with some cisterns and small, more normal appearing or fibriotic villi. An abnormal fetus can be present. Villous outlines are irregular and scalloped with fjord-like indentations and formation of trophoblast pseudoinclusions (figure 4). Villous trophoblast abnormalities, in contrast to CHM, are less prominent with focal non-polar or circumferential trophoblast hyperplasia.73 82 ![Figure 4](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F4.medium.gif) [Figure 4](http://bmjmedicine.bmj.com/content/1/1/e000321/F4) Figure 4 Partial hydatidiform mole (PHM). (A) In this macroscopic image of a PHM, focal vesicle formation is evident with some vesicles separating from the specimen at bottom right. (B) This low power magnification shows a mixture of villous types with a group of hydropic villi seen on the right and smaller, more normal sized villi on the left (16X). (C)The villus with a star has a trophoblast pseudoinclusion (50X). (D) The PHM villi are markedly irregular with fjord-like indentations (50X). (E) Focal non-polar trophoblast hyperplasia is affecting the villus with the star while the surrounding villi show little or no hyperplasia (100X). (F) p57 immunohistochemistry is normal (100X) Mimics of molar pregnancy show one or more of the aforementioned features and thus need to be distinguished from a hydatidiform mole based on their more limited morphological features of a mole or use of ancillary techniques. Hydropic abortions are characterised by a diffuse population of hydropic villi but they are generally regular in outline and show no significant trophoblast hyperplasia. Non-molar products of conception that show morphological abnormalities, termed abnormal villous morphology, can mimic molar pregnancy and can have some of the features of a mole, such as small trophoblast pseudoinclusions, irregular villous outlines, or focal abnormal villous trophoblast hyperplasia. Some specimens with abnormal villous morphology can result from genetic abnormalities, such as aneuploidy (figure 5).83 ![Figure 5](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F5.medium.gif) [Figure 5](http://bmjmedicine.bmj.com/content/1/1/e000321/F5) Figure 5 Abnormal villous morphology. (A) This macroscopic image of a second trimester placenta has a number of clear vesicles becoming detached from the specimen. (B) On microscopy of this placenta,villous morphology was abnormal with villous enlargement, some irregularity in villous outlines, and small pseudoinclusions (50X). This case was confirmed on microarray of fresh tissue to be an example of mosaicism for monosomy X (Turner syndrome) Immunohistochemistry and ploidy analysis using cytogenetics, flow cytometry, or fluorescent in situ hybridisation and molecular genotyping can help to distinguish moles from mimics and improve the accuracy of a GTD diagnosis. Use of cytogenetics for ploidy analysis can also identify aneuploidies, which can help to explain a particular pregnancy loss. ### p57 immunohistochemistry The protein p57kip2 (also termed p57) is a cyclin dependent kinase inhibitor encoded by the gene *CDKN1C* on chromosome 11p15.5. This gene is paternally imprinted and maternally expressed. When the maternal genome is present (in non-molar products of conception or PHM), p57 is expressed in placental villi and stromal cells and cytotrophoblast stain positively. In complete moles (diploid diandric), p57 is not expressed in cytotrophoblast and villous stroma and staining in these cells is lost. Staining is, however, preserved in the decidua and extravillous trophoblast, which act as internal controls for p57 immunohistochemistry.58 As a readily available test, p57 immunostaining can support the morphological diagnosis of CHM in routine practice. Rarely, other challenges in the interpretation of p57 immunohistochemistry arise (eg, when a maternal chromosome 11 is retained in a CHM and p57 continues to be expressed, or if a maternal chromosome 11 is lost in a PHM and p57 immunostaining is lost).82 84 Further ancillary testing and close correlation with morphology is required to prevent misdiagnosis in these cases. One category of morphologically abnormal products of conception in the differential diagnosis of molar pregnancy results from androgenetic/biparental mosaicism, which can be recognised by their unusual patterns of p57 staining.85 86 In p57 discordant villi, the villous stromal cells are p57 negative but the cytotrophoblast are p57 positive (figure 6). Inverted p57 discordant villi have the reverse pattern where the cytotrophoblast are negative and stromal cells are positive. Staining can also be divergent where two or more populations of villi exist with different staining patterns.85 ![Figure 6](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F6.medium.gif) [Figure 6](http://bmjmedicine.bmj.com/content/1/1/e000321/F6) Figure 6 p57 discordant villi. (A)This low power magnification shows abnormal villous morphology with enlarged, hypercellular villi and a trophoblast pseudoinclusion but no trophoblast hyperplasia (50X). (B) Immunohistochemistry for p57 shows a discordant pattern with positive cytotrophoblast and negative stromal cells (100X). (C) Careful examination of the specimen identified a small focus of villi with trophoblast hyperplasia (star) (50X). (D) This focus of villi showed absence of p57 staining in stroma and cytotrophoblast in keeping with a component of CHM (50X). Although uncommon, these types of products of conception are important because they might harbour a component villous population that is purely androgenetic and therefore represents a CHM and thus requires the appropriate clinical follow-up.85 In addition to their representation in early gestation products of conception, these patterns can be seen in the second and third trimester in placental mesenchymal dysplasia (p57 discordant villi)87 88 and as a focal finding in otherwise normal placentas (inverted p57 discordant villi).89 In general, p57 assists in the differential diagnosis of CHM, and ploidy analysis is frequently used to support morphology and confirm or exclude a triploid conceptus in the differential diagnosis of PHM. However, ploidy will not distinguish between triploidy with two paternal (diandric) or two maternal (digynic) contributions to the genome and thus must be used in combination with morphological assessment. ### Molecular genotyping Molecular genotyping is considered the gold standard for hydatidiform mole classification because this process can establish ploidy and identify the parental origin of the molar tissue. Molecular genotyping can also help to differentiate complete and partial moles from GTD mimics. Analysis of polymorphic short tandem repeat DNA sequences on multiple chromosomes in the human genome is used to determine genotype.24 The short tandem repeat profiles in the placental villi of molar tissue are compared with those obtained from the maternal DNA in decidua to classify the mole. The clinical accuracy of short tandem repeat genotyping to refine the diagnosis of GTD has been shown by various studies.90 91 Some pitfalls in the use of molecular genotyping include the analysis of familial recurrent hydatidiform moles, which have a diploid biparental genome and can be misinterpreted as a non-molar gestation. In addition, an egg donor pregnancy, which does not carry alleles from the recipient mother, can be misinterpreted as a diandric complete mole. Close correlation of morphology, p57 immunostaining, and genotyping is required to ensure the correct diagnosis is reached in all cases.64 ## Biochemical diagnosis hCG is a member of the glycoprotein hormone family that includes three pituitary hormones: luteinising hormone, follicle stimulating hormone, and thyroid stimulating hormone. These hormones are heterodimers that share a common alpha (α) subunit but have a unique hormone specific beta (β) subunit. hCG is a heterogenous molecule with many different isoforms produced by complex post-translational modification. In early pregnancy (three weeks gestation), hyperglycosylated hCG is produced by the syncytiotrophoblasts of the placenta to promote growth and differentiation.92 The main hCG variants found in serum or urine include intact hCG (α and β) along with fragments of nicked hCG, nicked hCGβ, and hCGβ core fragment.93 These five biologically active hCG isoforms are clinically relevant in gestational trophoblastic disease.94 ### Human chorionic gonadotrophin assays Most commercial immunoassays were developed for the detection of hCG in early pregnancy. Total hCG assays detect intact and free β-subunit but will not necessarily detect all isoforms secreted in GTD.95 96 There is no international standardised hCG assay approved for use in women with GTD. Ideally hCG should be monitored with an assay that detects all hCG isoforms in equimolar amounts.97 98 GTD reference centres should have access to at least two hCG assays, one for primary analysis and another for confirmatory diagnosis. Several factors contribute to the variability in hCG assays including assay calibration, analyte specificity, and antibody heterogeneity. In the absence of centralised hCG monitoring, hCG should be measured using the same assay and analytical platform throughout follow-up to avoid inter-assay variability.96 In molar pregnancy, hCG is monitored postoperatively until normalisation is achieved. However, no consensus exists on what constitutes as normalisation because this term is assay dependent and can depend on the functional sensitivity of the assay and confidence interval used to define normality. Thus, the surveillance period can be prolonged in women monitored in a centre using a normal reference range of less than 1 IU/L as opposed to the commonly quoted reference range of less than 5 IU/L. ### Immunoassay interference All tumour markers measured by immunoassay are subject to false positive and false negative results from analytical or biological interference. Analytical interference in serum due to the presence of heterophilic antibodies (eg, anti-mouse antibodies) usually produces false positive results. A paired urine hCG measurement will not be subject to this interference as heterophilic antibodies are retained in the kidney. Non-linear dilution of serum samples might also suggest antibody interference.99 Heterophilic blocking tubes or polyethylene glycol precipitation can be used to remove antibody interference in serum.100 101 Another cause of erroneous results in immunoassay is due to a phenomenon known as the high dose hook effect which occurs when very high concentrations of hCG (>500 000 IU/L) generate a falsely low result.102 This effect occurs when excess analyte (hCG) saturates the assay antibodies and results in underestimation of analyte concentration. Dilution of the patient’s serum will bring the analyte concentration back into the measuring range of the assay and allow accurate quantitation. Clinicians and scientists need to be aware of the limitations of their hCG assay and ensure that suspicious results not fitting the clinical picture are discussed. Further investigations could involve use of an alternate assay or sending the sample for reanalysis to a GTD reference centre. ### Persistent low level hCG elevations Persistent low level hCG elevations can indicate disease recurrence or lack of response to treatment. In addition, some women with quiescent GTD have persistently low levels of hCG without clinical or radiological evidence of disease.103 Diagnostic interpretation can also be complicated by a pregnancy or the presence of pituitary derived-hCG in postmenopausal women. hCG concentrations can still be within the normal range when elevated up to 14 IU/L in women aged 55 years or older.104 Snyder et al provide an algorithm for investigating pituitary derived hCG and the European Organisation of Trophoblastic Disease practical clinical guidelines suggest further ways to investigate persistent low level hCG elevations.105 106 Familial hCG syndrome, a rare inherited form of persistently elevated non-functional hCG, can also complicate hCG monitoring.106 Inaccurate serum hCG results can have serious adverse consequences for patient management. Cole et al reported a series of 12 women diagnosed with gestational choriocarcinoma due to false positive hCG results.107 Seven of these women had either major surgery or chemotherapy and five had procedures which resulted in loss of fertility. Concurrent testing of serum and urine hCG in a GTD reference centre resolved all cases with false positives results due to circulating heterophilic antibodies.107 ## Clinical guidelines In the absence of randomised controlled trial data for this rare disease, systematic reviews and consensus expert opinion have informed the development of international clinical GTD guidelines.108 109 Clinical practice guidelines have been generated by a number of organisations including the Royal College of Obstetrics and Gynaecologists, European Society for Medical Oncology, and European Organisation of Trophoblastic Disease.4 5 14 The European Organisation of Trophoblastic Disease clinical working party published practical clinical guidelines for GTD in 2020 in an effort to harmonise practice across Europe.5 This guideline advises when women should be referred to specialist GTD centres where expert advice is available. They recommend a centralised model of care with central hCG monitoring and pathology review because a large retrospective observational study showed that centralised pathology review altered the diagnosis in 40% of cases.110 Management of women with GTD by physicians who are experienced in trophoblastic disease has also resulted in better survival outcomes than when they are treated outside trophoblastic reference centres.111 112 An update to the Royal College of Obstetrics and Gynaecologists clinical guidelines for GTD in 2021 recommends registration of all affected women with a GTD centre as a minimum standard of care.14 The Irish clinical guidelines endorse this recommendation and advise centralisation of hCG measurement in a quality assured laboratory using an oncology approved assay.113 All guidelines recommend hCG monitoring of women after molar pregnancy to enable early detection of disease persistence. A large retrospective UK study of 20 000 women who had hCG monitoring after a molar pregnancy found the risk of GTN after hCG normalisation was 0.25% for CHM and 0.03% for PHM.114 A systematic review of 19 independent studies reported a slightly higher risk of GTN (0.35%) after hCG normalisation in CHM.115 Another study found that prolonged hCG surveillance particularly after PHM is not cost-effective given the rarity of GTN.116 Consequently, the Royal College of Obstetrics and Gynaecologists guidelines recommend a shorter hCG surveillance period after PHM with monitoring complete after two normal hCG values are obtained, one month apart. Complete moles require a longer surveillance period reflecting their higher risk of GTN. In CHM cases where hCG normalisation occurs within 56 days (eight weeks), women have hCG monitoring for a total of six months after uterine evacuation. However, when hCG normalisation occurs beyond 56 days, women require hCG monitoring for six months after normalisation (figure 7).14 113 114 Another update in the Royal College of Obstetrics and Gynaecologists guideline concerns women who did not require chemotherapy after molar pregnancy. These women no longer require a hCG test or histopathological examination of their placental tissue after future normal pregnancies.117 ![Figure 7](http://bmjmedicine.bmj.com/https://bmjmedicine.bmj.com/content/bmjmed/1/1/e000321/F7.medium.gif) [Figure 7](http://bmjmedicine.bmj.com/content/1/1/e000321/F7) Figure 7 hCG monitoring protocol for complete and partial hydatidiform moles. hCG=human chorionic gonadotrophin.*hCG monitoring is done on the same analytical platform throughout follow-up. Adapted from the Royal College of Obstetrics and Gynaecology guidelines.14 Reproduced with permission Joyce and colleagues143 Women with invasive mole or choriocarcinoma are stratified into low or high risk GTN categories based on the Federation of Gynaecology and Obstetrics (FIGO) staging and modified WHO prognostic scoring system (tables 2 and 3). View this table: [Table 2](http://bmjmedicine.bmj.com/content/1/1/e000321/T2) Table 2 Federation of Gynaecology and Obstetrics (FIGO) staging for GTN View this table: [Table 3](http://bmjmedicine.bmj.com/content/1/1/e000321/T3) Table 3 World Health Organization modified prognostic scoring system for GTN The FIGO scoring system is endorsed by all international GTD guidelines and is based on three main measures: post-evacuation hCG concentration, presence of metastatic disease, and histopathological diagnosis. A doppler pelvic ultrasound should be performed to confirm the absence of a pregnancy and ascertain the size of any intrauterine tumour. Chest x ray as opposed to computed tomography is the preferred imaging modality for detection of pulmonary metastases.4 Some centres consider a hCG concentration of 20 000 IU/L or more, four weeks after uterine evacuation as an indication for immediate chemotherapy but this recommendation has not been adopted by FIGO.118 Genomics might also be incorporated into future updates to the FIGO scoring system to reflect the critical role of molecular genotyping in identifying the antecedent pregnancy for GTN. Women with low risk disease (score of ≤6) without metastatic disease are offered single drug chemotherapy or hysterectomy. Whereas women with high risk disease (score of ≥7) are offered multidrug chemotherapy, ideally under the supervision of an expert in GTD management. In the event of drug resistance or disease related complications, surgery can be considered. Women with ultra-high risk disease (score of >12) generally present with liver or brain metastases and require specialist multidisciplinary care. An adjustment to the FIGO scoring system is required to identify women at low risk who become resistant to single drug chemotherapy to enable them be treated at the outset with multidrug chemotherapy.7 Women treated with chemotherapy after a molar pregnancy are advised to avoid pregnancy for at least a year when the risk of relapse is greatest (3%) and an increase in hCG concentration might prevent early detection of disease recurrence.119 Advice on safe contraception after a molar pregnancy can be found in national fertility guidelines.120 A systematic review found no evidence for an association between oral contraceptive use during follow-up after a mole and the incidence of GTN.121 Moreover, a Brazilian retrospective cohort study found no association between hormonal contraceptive use during molar pregnancy follow-up or GTN treatment and the risk or severity of GTN, nor did it postpone the normalisation of hCG concentrations.122 In a retrospective review of 1532 women with gestational trophoblastic tumours who were treated with chemotherapy, 230 became pregnant within 12 months of finishing chemotherapy and five of these women relapsed. However, the relapse rate in women following chemotherapy was not higher in those women who became pregnant within the first year. This study also reported that single drug chemotherapy had no effect on fetal outcomes but that multidrug chemotherapy might have a transient effect on fertility and increase the risk of miscarriage.123 Importantly, all guidelines recommend that GTN should be considered in the differential diagnosis of all women who present with irregular vaginal bleeding after pregnancy and that serum hCG measurement should be included in the diagnostic investigations.39 ## Advances in diagnostics and therapeutics Molecular genotyping has a central role in establishing the genomic origin of trophoblastic tumours and informs prognosis and treatment options. When tumour tissue is inaccessible, liquid biopsy can provide a non-invasive method of analysing circulating tumour DNA in maternal blood to confirm the genetic origin of choriocarcinoma.124 In a study of 20 women with GTN, short tandem repeat analysis of circulating tumour DNA provided a genetic diagnosis in all but three cases. Women without a diagnosis had low levels of circulating tumour DNA and concurrent low hCG levels reflecting a low tumour burden. Digital droplet polymerase chain reaction combined with single nucleotide polymorphism analysis can provide a more sensitive diagnostic technique for such cases.125 The use of circulating gestational trophoblasts to establish the genetic origin of trophoblastic disease shows promise. A comparative study found circulating gestational trophoblasts superior to circulating tumour DNA for confirming a diploid androgenetic conceptus.126 Use of circulating gestational trophoblasts has the advantage of using single cells to allow better discrimination of mosaicism and is not subject to maternal DNA interference, which simplifies result interpretation. Matrix metalloproteinases, which facilitate extra-cellular matrix degradation, might also allow malignant trophoblast cells invade the maternal uterus.127 The high expression of matrix metalloproteinases and low expression of their inhibitors in choriocarcinoma might explain its invasiveness and malignant potential.128 129 Similarly, the wingless signalling pathway (Wnt gene family), which regulates placental cell migration, might be implicated in trophoblastic disease. Methylation based silencing of Wnt signalling inhibitors might enable Wnt hyperactivation and facilitate trophoblast invasion reported in cases of CHM and choriocarcinoma.130 Therefore, drugs that inhibit matrix metalloproteinase or downregulate Wnt signalling might provide useful future therapeutic options. High concentrations of the angiogenic factor BMP-9 have been associated with chemoresistance to primary methotrexate therapy. The combined use of serum BMP-9 levels with an ultrasound biomarker for tumour vascularity (uterine pulsatile index) shows promise in helping to predict which women will develop methotrexate resistance.131 Furthermore, algorithms that use hCG regression nomograms to predict early chemoresistance might prove useful for clinical managment but they are assay specific and not widely adopted.132 Use of checkpoint inhibitor immunotherapy (eg, pembrolizumab) for chemoresistant, very high risk GTN has had some success.133 Immunotherapy targets the T cell receptor, PD-L1, which is highly expressed on normal trophoblasts and all forms of GTN.7 133 The presence of tumour infiltrating lymphocytes can serve as a biomarker to select women who might respond to pembrolizumab.53 Another PD-L1 inhibitor, avelumab, was found to be safe and effective in GTN cases resistant to single drug chemotherapy.134 An alternative salvage treatment for chemoresistant GTN involves use of camrelizumab plus apatinib.135 Hence, clinical trials are evaluating the use of checkpoint inhibitors alone or in combination with chemotherapy to target choriocarcinoma.108 Women with low risk GTN (FIGO score of 5-6) who have a high chance of resistance to first line therapy (methotrexate or actinomycin-D) could be risk stratified to combination therapy based on prognostic factors (hCG concentration before treatment, metastatic disease status, and choriocarcinoma histopathology).136 In particular, women with methotrexate resistance could be treated with ATR or CDK4/6 inhibitors.137 ## Effect of diagnosis on women and their families Despite excellent cure rates, the psychosocial consequences of GTD are complex and clinicians need to be mindful of the need for counselling and psychological support for these women. Cancer specific distress, future fertility fears, mood, and sexual disturbances can persist for years in affected women.129 138 A systematic review of health related quality of life outcomes in women with GTD found substantial levels of anxiety, depression, sexual dysfunction, and fertility related distress, especially in women treated for GTN.139 In a prospective study published in 2022 of the psychological impact of GTD on 60 women, 47% reported feeling anxious and 70% reported feeling distressed during the surveillance period.140 Unfortunately, this study did not record previous mental health status or antidepressant use of the participants which was highlighted in a follow-up letter to the editor.141 142 A survey of women on the Irish national GTD registry found that women experienced feelings of intense sadness at the time of diagnosis and needed psychological support to help them to deal with the pregnancy loss. The need for information leaflets, psychological counselling, bereavement care guidance, and peer support was greatest in the first year after diagnosis.143 A fear of disease recurrence and concerns about future pregnancies accounted for some of the psychological distress experienced by these women.139 144 145 Healthcare professionals treating affected women need to be mindful of the psychological wellbeing of women and their partners as a consequence of GTD and they need to be alert to their desire for supportive services. ## Conclusion The prognosis for women after a molar pregnancy is excellent but some uncertainty remains around the cause of GTD, the risk factors that contribute to malignant transformation, and the optimum surveillance period. The increased use of molecular genotyping has improved the diagnostic accuracy of GTD classification, which is critical for prognostic stratification. Further work is needed to standardise hCG assays and identify those assays that are most appropriate for use in oncology. At this time, no effective prognostic biomarker is available to specifically identify those few women who will develop malignancy after molar pregnancy and require chemotherapy. The treatment options for GTN over the past decade have improved considerably with most women now cured and salvage treatment pathways available for those who develop chemoresistance. As our understanding of GTD evolves, we might identify more sensitive biomarkers to detect disease progression earlier and to reduce the lengthy surveillance period, which impacts future pregnancy planning. Identification of women with GTD is of paramount importance because this disorder is highly curable. #### Questions for future research * How do we define human chorionic gonadotrophin normalisation? * What is the optimum surveillance period after molar pregnancy? * How can we predict which women will develop malignancy after molar pregnancy? * What is the genomic imprinting defect in hydatidiform mole? * How can we improve the reporting and surveillance of gestational trophoblastic disease to ensure more accurate incidence rates? #### Patient involvement When planning this review, the opinion of a patient diagnosed with a complete hydatidiform mole was sought. This woman developed persistent disease after a molar pregnancy and required multidrug chemotherapy. She was provided with a draft outline of the review and based on her feedback, a section on the psychological impact of gestational trophoblastic disease diagnosis on women and their families was included in the review. ## Acknowledgments We wish to thank our patient representative, Evelyn Kingston Mythen, for her valuable contribution to this review. ## Footnotes * Twitter @carolinemjoyce, @keelinodonoghue * Contributors CMJ developed the review outline, performed the literature review, and wrote all sections of the manuscript. KOD developed the review outline, reviewed the manuscript, and is supervising CMJ for her PhD. BF provided the pathology images and critically reviewed the manuscript. TMC reviewed and edited the manuscript and is supervising CMJ for her PhD. JC reviewed and edited the manuscript. All authors approved the final version of the manuscript. KOD is the guarantor. * Funding CMJ is funded by the Irish Research Council under grant number EBPPG/2021/38. * Competing interests We have read and understood the BMJ Medicine policy on declaration of interests and declare the following interests: none. * Provenance and peer review Commissioned; externally peer reviewed. * Received July 17, 2022. * Accepted October 21, 2022. * © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/) This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: [http://creativecommons.org/licenses/by-nc/4.0/](http://creativecommons.org/licenses/by-nc/4.0/). ## References 1. Ngan S , Seckl MJ . Gestational trophoblastic neoplasia management: an update. Curr Opin Oncol 2007;19:486–91.[doi:10.1097/CCO.0b013e3282dc94e5](http://dx.doi.org/10.1097/CCO.0b013e3282dc94e5) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17762576 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1097/CCO.0b013e3282dc94e5&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=17762576&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000248837400012&link_type=ISI) 2. Savage PM , Sita-Lumsden A , Dickson S , et al . The relationship of maternal age to molar pregnancy incidence, risks for chemotherapy and subsequent pregnancy outcome. J Obstet Gynaecol 2013;33:406–11.[doi:10.3109/01443615.2013.771159](http://dx.doi.org/10.3109/01443615.2013.771159) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23654327 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.3109/01443615.2013.771159&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=23654327&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 3. Seckl MJ , Sebire NJ , Berkowitz RS . Gestational trophoblastic disease. Lancet 2010;376:717–29.[doi:10.1016/S0140-6736(10)60280-2](http://dx.doi.org/10.1016/S0140-6736(10)60280-2) [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(10)60280-2&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=20673583&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000281582900031&link_type=ISI) 4. Seckl MJ , Sebire NJ , Fisher RA , et al . Gestational trophoblastic disease: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013;24 Suppl 6:vi39–50.[doi:10.1093/annonc/mdt345](http://dx.doi.org/10.1093/annonc/mdt345) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23999759 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 5. Lok C , van Trommel N , Massuger L , et al . Practical clinical guidelines of the EOTTD for treatment and referral of gestational trophoblastic disease. Eur J Cancer 2020;130:228–40.[doi:10.1016/j.ejca.2020.02.011](http://dx.doi.org/10.1016/j.ejca.2020.02.011) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32247260 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 6. Winter MC . Treatment of low-risk gestational trophoblastic neoplasia. Best Pract Res Clin Obstet Gynaecol 2021;74:67–80.[doi:10.1016/j.bpobgyn.2021.01.006](http://dx.doi.org/10.1016/j.bpobgyn.2021.01.006) 7. Clark JJ , Slater S , Seckl MJ . Treatment of gestational trophoblastic disease in the 2020s. Curr Opin Obstet Gynecol 2021;33:7–12.[doi:10.1097/GCO.0000000000000674](http://dx.doi.org/10.1097/GCO.0000000000000674) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33337613 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 8. Braga A , Elias KM , Horowitz NS , et al . Treatment of high-risk gestational trophoblastic neoplasia and chemoresistance/relapsed disease. Best Pract Res Clin Obstet Gynaecol 2021;74:81–96.[doi:10.1016/j.bpobgyn.2021.01.005](http://dx.doi.org/10.1016/j.bpobgyn.2021.01.005) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33622563 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 9. Smith HO . Gestational trophoblastic disease epidemiology and trends. Clin Obstet Gynecol 2003;46:541–56.[doi:10.1097/00003081-200309000-00006](http://dx.doi.org/10.1097/00003081-200309000-00006) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12972736 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1097/00003081-200309000-00006&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=12972736&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000185547600004&link_type=ISI) 10. Lund H , Vyberg M , Eriksen HH . Decreasing incidence of registered hydatidiform moles in Denmark 1999–2014. Sci Rep [Internet] 2020;10:1–10. 11. Eysbouts YK , Bulten J , Ottevanger PB , et al . Trends in incidence for gestational trophoblastic disease over the last 20 years in a population-based study. Gynecol Oncol 2016;140:70–5.[doi:10.1016/j.ygyno.2015.11.014](http://dx.doi.org/10.1016/j.ygyno.2015.11.014) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26586414 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 12. Joneborg U , Folkvaljon Y , Papadogiannakis N , et al . Temporal trends in incidence and outcome of hydatidiform mole: a retrospective cohort study. Acta Oncol 2018;57:1094–9.[doi:10.1080/0284186X.2018.1438653](http://dx.doi.org/10.1080/0284186X.2018.1438653) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29451409 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 13. Horowitz NS , Eskander RN , Adelman MR , et al . Epidemiology, diagnosis, and treatment of gestational trophoblastic disease: a Society of gynecologic oncology evidenced-based review and recommendation. Gynecol Oncol 2021;163:605–13.[doi:10.1016/j.ygyno.2021.10.003](http://dx.doi.org/10.1016/j.ygyno.2021.10.003) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34686354 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 14. Tidy J , Seckl MHB . Management of gestational trophoblastic disease. BJOG 2021;128:e1–27. 15. Tham BWL , Everard JE , Tidy JA , et al . Gestational trophoblastic disease in the Asian population of northern England and North Wales. BJOG 2003;110:555–9.[doi:10.1046/j.1471-0528.2003.01413.x](http://dx.doi.org/10.1046/j.1471-0528.2003.01413.x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12798471 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1046/j.1471-0528.2003.01413.x&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=12798471&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 16. Melamed A , Gockley AA , Joseph NT , et al . Effect of race/ethnicity on risk of complete and partial molar pregnancy after adjustment for age. Gynecol Oncol 2016;143:73–6.[doi:10.1016/j.ygyno.2016.07.117](http://dx.doi.org/10.1016/j.ygyno.2016.07.117) 17. Strohl AE , Lurain JR . Clinical epidemiology of gestational trophoblastic disease. Curr Obstet Gynecol Rep 2014;3:40–3.[doi:10.1007/s13669-013-0070-7](http://dx.doi.org/10.1007/s13669-013-0070-7) 18. Altieri A , Franceschi S , Ferlay J , et al . Epidemiology and aetiology of gestational trophoblastic diseases. Lancet Oncol 2003;4:670–8.[doi:10.1016/S1470-2045(03)01245-2](http://dx.doi.org/10.1016/S1470-2045(03)01245-2) [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S1470-2045(03)01245-2&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=14602247&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000186459600018&link_type=ISI) 19. Savage P , Williams J , Wong S-L , et al . The demographics of molar pregnancies in England and Wales from 2000-2009. J Reprod Med 2010;55:341–5.pmid:http://www.ncbi.nlm.nih.gov/pubmed/20795349 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=20795349&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 20. Zhang W , Liu B , Wu J , et al . Hemoptysis as primary manifestation in three women with choriocarcinoma with pulmonary metastasis: a case series. J Med Case Rep 2017;11:110.[doi:10.1186/s13256-017-1256-9](http://dx.doi.org/10.1186/s13256-017-1256-9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28411623 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 21. Mangla M , Singla D , Kaur H , et al . Unusual clinical presentations of choriocarcinoma: a systematic review of case reports. Taiwan J Obstet Gynecol 2017;56:1–8.[doi:10.1016/j.tjog.2015.05.011](http://dx.doi.org/10.1016/j.tjog.2015.05.011) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28254207 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 22. Savage P , Winter M , Parker V , et al . Demographics, natural history and treatment outcomes of non-molar gestational choriocarcinoma: a UK population study. BJOG 2020;127:1102–7.[doi:10.1111/1471-0528.16202](http://dx.doi.org/10.1111/1471-0528.16202) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32146729 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 23. Bynum J , Murphy KM , DeScipio C , et al . Invasive complete hydatidiform moles: analysis of a case series with genotyping. Int J Gynecol Pathol 2016;35:134–41.[doi:10.1097/PGP.0000000000000232](http://dx.doi.org/10.1097/PGP.0000000000000232) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26535984 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 24. Fisher RA , Maher GJ . Genetics of gestational trophoblastic disease. Best Pract Res Clin Obstet Gynaecol 2021;74:29–41.[doi:10.1016/j.bpobgyn.2021.01.004](http://dx.doi.org/10.1016/j.bpobgyn.2021.01.004) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33685819 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 25. Seckl MJ , Fisher RA , Salerno G , et al . Choriocarcinoma and partial hydatidiform moles. Lancet 2000;356:36–9.[doi:10.1016/S0140-6736(00)02432-6](http://dx.doi.org/10.1016/S0140-6736(00)02432-6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/10892763 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(00)02432-6&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10892763&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000087933400014&link_type=ISI) 26. Slim R , Mehio A . The genetics of hydatidiform moles: new lights on an ancient disease. Clin Genet 2007;71:25–34.[doi:10.1111/j.1399-0004.2006.00697.x](http://dx.doi.org/10.1111/j.1399-0004.2006.00697.x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17204043 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1111/j.1399-0004.2006.00697.x&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=17204043&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000242861800003&link_type=ISI) 27. Soper JT . Gestational trophoblastic disease: current evaluation and management. Obstet Gynecol 2021;137:355–70.[doi:10.1097/AOG.0000000000004240](http://dx.doi.org/10.1097/AOG.0000000000004240) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33416290 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 28. Schmid P , Nagai Y , Agarwal R , et al . Prognostic markers and long-term outcome of placental-site trophoblastic tumours: a retrospective observational study. Lancet 2009;374:48–55.[doi:10.1016/S0140-6736(09)60618-8](http://dx.doi.org/10.1016/S0140-6736(09)60618-8) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19552948 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(09)60618-8&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=19552948&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000267768800033&link_type=ISI) 29. Lybol C , Thomas CMG , Bulten J , et al . Increase in the incidence of gestational trophoblastic disease in the Netherlands. Gynecol Oncol 2011;121:334–8.[doi:10.1016/j.ygyno.2011.01.002](http://dx.doi.org/10.1016/j.ygyno.2011.01.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21247618 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=21247618&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 30. Yang J , Zong L , Wang J , et al . Epithelioid trophoblastic tumors: treatments, outcomes, and potential therapeutic targets. J Cancer 2019;10:11–19.[doi:10.7150/jca.28134](http://dx.doi.org/10.7150/jca.28134) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30662520 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 31. Hui P . Gestational trophoblastic tumors: a timely review of diagnostic pathology. Arch Pathol Lab Med 2019;143:65–74.[doi:10.5858/arpa.2018-0234-RA](http://dx.doi.org/10.5858/arpa.2018-0234-RA) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30407075 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 32. Chaves MM , Maia T , Cunha TM , et al . Placental site trophoblastic tumour: the rarest subtype of gestational trophoblastic disease. BMJ Case Rep 2020;13:e235756–6.[doi:10.1136/bcr-2020-235756](http://dx.doi.org/10.1136/bcr-2020-235756) 33. Hancock BW , Tidy J . Placental site trophoblastic tumour and epithelioid trophoblastic tumour. Best Pract Res Clin Obstet Gynaecol 2021;74:131–48.[doi:10.1016/j.bpobgyn.2020.10.004](http://dx.doi.org/10.1016/j.bpobgyn.2020.10.004) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33139212 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 34. Horowitz NS , Goldstein DP , Berkowitz RS . Placental site trophoblastic tumors and epithelioid trophoblastic tumors: biology, natural history, and treatment modalities. Gynecol Oncol 2017;144:208–14.[doi:10.1016/j.ygyno.2016.10.024](http://dx.doi.org/10.1016/j.ygyno.2016.10.024) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27789086 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 35. Ross JA , Unipan A , Clarke J , et al . Ultrasound diagnosis of molar pregnancy. Ultrasound 2018;26:153–9.[doi:10.1177/1742271X17748514](http://dx.doi.org/10.1177/1742271X17748514) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30147739 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 36. Fowler DJ , Lindsay I , Seckl MJ SN . Routine pre‐evacuation ultrasound diagnosis of hydatidiform mole experience. Ultrasound Obs Gyne 2006;27:56–60. 37. Sun SY , Melamed A , Goldstein DP , et al . Changing presentation of complete hydatidiform mole at the new England trophoblastic disease center over the past three decades: does early diagnosis alter risk for gestational trophoblastic neoplasia? Gynecol Oncol 2015;138:46–9.[doi:10.1016/j.ygyno.2015.05.002](http://dx.doi.org/10.1016/j.ygyno.2015.05.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25969351 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 38. Hou J-L , Wan X-R , Xiang Y , et al . Changes of clinical features in hydatidiform mole: analysis of 113 cases. J Reprod Med 2008;53:629–33.pmid:http://www.ncbi.nlm.nih.gov/pubmed/18773629 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=18773629&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 39. Ngan HYS , Seckl MJ , Berkowitz RS , et al . Diagnosis and management of gestational trophoblastic disease: 2021 update. Int J Gynaecol Obstet 2021;155 Suppl 1:86–93.[doi:10.1002/ijgo.13877](http://dx.doi.org/10.1002/ijgo.13877) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34669197 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 40. Seckl MJ . Gestational trophoblast disease: clinical presentation and treatment. Diagnostic Histopathology 2019;25:77–85.[doi:10.1016/j.mpdhp.2018.12.002](http://dx.doi.org/10.1016/j.mpdhp.2018.12.002) 41. Sebire NJ , Foskett M , Paradinas FJ , et al . Outcome of twin pregnancies with complete hydatidiform mole and healthy co-twin. Lancet 2002;359:2165–6.[doi:10.1016/S0140-6736(02)09085-2](http://dx.doi.org/10.1016/S0140-6736(02)09085-2) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12090984 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(02)09085-2&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=12090984&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000176441800013&link_type=ISI) 42. Zeng C , Chen Y , Zhao L , et al . Partial hydatidiform mole and coexistent live fetus: a case report and review of the literature. Open Med 2019;14:843–6.[doi:10.1515/med-2019-0098](http://dx.doi.org/10.1515/med-2019-0098) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 43. Russell JC , Niemann I , Sebire NJ . P176 update on UK outcomes in twin pregnancies with complete hydatidiform mole and normal co-twin: a retrospective national cohort study in 153 new cases. BMJ Specialist Journals 2019. 44. Niemann L , Fisher R , Sebire NJ . Update on UK outcomes for women with twin pregnancies comprising a complete hydatidiform mole and normal co-twin. In: XVII world Congress on gestational trophoblastic disease, 2013: 57 (Abstract). 45. Lin LH , Maestá I , Braga A , et al . Multiple pregnancies with complete mole and coexisting normal fetus in North and South America: a retrospective multicenter cohort and literature review. Gynecol Oncol 2017;145:88–95.[doi:10.1016/j.ygyno.2017.01.021](http://dx.doi.org/10.1016/j.ygyno.2017.01.021) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28132722 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 46. Zilberman Sharon N , Maymon R , Melcer Y , et al . Obstetric outcomes of twin pregnancies presenting with a complete hydatidiform mole and coexistent normal fetus: a systematic review and meta-analysis. BJOG 2020;127:1450–7.[doi:10.1111/1471-0528.16283](http://dx.doi.org/10.1111/1471-0528.16283) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32339446 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 47. Sebire NJ , Foskett M , Fisher RA , et al . Risk of partial and complete hydatidiform molar pregnancy in relation to maternal age. BJOG 2002;109:99–102.[doi:10.1111/j.1471-0528.2002.t01-1-01037.x](http://dx.doi.org/10.1111/j.1471-0528.2002.t01-1-01037.x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/11843379 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1111/j.1471-0528.2002.t01-1-01037.x&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=11843379&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000177328100015&link_type=ISI) 48. Gockley AA , Melamed A , Joseph NT , et al . The effect of adolescence and advanced maternal age on the incidence of complete and partial molar pregnancy. Gynecol Oncol 2016;140:470–3.[doi:10.1016/j.ygyno.2016.01.005](http://dx.doi.org/10.1016/j.ygyno.2016.01.005) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26777992 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 49. Sebire NJ , Fisher RA , Foskett M , et al . Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. BJOG: An Internal Journal of Obs Gyn 2003;110:22–6.[doi:10.1046/j.1471-0528.2003.02388.x](http://dx.doi.org/10.1046/j.1471-0528.2003.02388.x) 50. Eagles N , Sebire NJ , Short D , et al . Risk of recurrent molar pregnancies following complete and partial hydatidiform moles. Hum Reprod 2015;30:2055–63.[doi:10.1093/humrep/dev169](http://dx.doi.org/10.1093/humrep/dev169) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26202916 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1093/humrep/dev169&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=26202916&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 51. Lorigan PC , Sharma S , Bright N , et al . Characteristics of women with recurrent molar pregnancies. Gynecol Oncol 2000;78:288–92.[doi:10.1006/gyno.2000.5871](http://dx.doi.org/10.1006/gyno.2000.5871) pmid:http://www.ncbi.nlm.nih.gov/pubmed/10985882 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1006/gyno.2000.5871&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10985882&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 52. Tuncer ZS , Bernstein MR , Wang J , et al . Repetitive hydatidiform mole with different male partners. Gynecol Oncol 1999;75:224–6.[doi:10.1006/gyno.1999.5562](http://dx.doi.org/10.1006/gyno.1999.5562) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10525376&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 53. Fisher RA , Lavery SA , Carby A , et al . What a difference an egg makes. Lancet 2011;378:1974.[doi:10.1016/S0140-6736(11)61751-0](http://dx.doi.org/10.1016/S0140-6736(11)61751-0) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22130487 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(11)61751-0&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=22130487&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000298136200031&link_type=ISI) 54. Judson H , Hayward BE , Sheridan E , et al . A global disorder of imprinting in the human female germ line. Nature 2002;416:539–42.[doi:10.1038/416539a](http://dx.doi.org/10.1038/416539a) pmid:http://www.ncbi.nlm.nih.gov/pubmed/11932746 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/416539a&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=11932746&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000174756500044&link_type=ISI) 55. Nguyen NMP , Ge Z-J , Reddy R , et al . Causative mutations and mechanism of androgenetic hydatidiform moles. Am J Hum Genet 2018;103:740–51.[doi:10.1016/j.ajhg.2018.10.007](http://dx.doi.org/10.1016/j.ajhg.2018.10.007) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30388401 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ajhg.2018.10.007&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 56. Worley MJ , Joseph NT , Berkowitz RS , et al . Women with a partial mole during their first pregnancy and diagnosed earlier in gestation are at increased risk of developing gestational trophoblastic neoplasia. Int J Gynecol Cancer 2014;24:941–5.[doi:10.1097/IGC.0000000000000130](http://dx.doi.org/10.1097/IGC.0000000000000130) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24819660 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiaWpnYyI7czo1OiJyZXNpZCI7czo4OiIyNC81Lzk0MSI7czo0OiJhdG9tIjtzOjI0OiIvYm1qbWVkLzEvMS9lMDAwMzIxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 57. Parazzini F , La Vecchia C , Mangili G , et al . Dietary factors and risk of trophoblastic disease. Am J Obstet Gynecol 1988;158:93–9.[doi:10.1016/0002-9378(88)90785-5](http://dx.doi.org/10.1016/0002-9378(88)90785-5) pmid:http://www.ncbi.nlm.nih.gov/pubmed/2827487 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=2827487&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=A1988L780500022&link_type=ISI) 58. Berkowitz RS , Goldstein DP . Gynecologic oncology current management of gestational trophoblastic diseases. Gynecol Oncol [Internet] 2009;112:654–62.[doi:10.1016/j.ygyno.2008.09.005](http://dx.doi.org/10.1016/j.ygyno.2008.09.005) 59. Waterland RA , Jirtle RL . Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004;20:63–8.[doi:10.1016/j.nut.2003.09.011](http://dx.doi.org/10.1016/j.nut.2003.09.011) pmid:http://www.ncbi.nlm.nih.gov/pubmed/14698016 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.nut.2003.09.011&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=14698016&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000188083300012&link_type=ISI) 60. Candelier J-J . The hydatidiform mole. Cell Adh Migr 2016;10:226–35.[doi:10.1080/19336918.2015.1093275](http://dx.doi.org/10.1080/19336918.2015.1093275) 61. Gockley AA , Joseph NT , Melamed A , et al . Effect of race/ethnicity on clinical presentation and risk of gestational trophoblastic neoplasia in patients with complete and partial molar pregnancy at a tertiary care referral center. Am J Obstet Gynecol 2016;215:334.e1–334.e6.[doi:10.1016/j.ajog.2016.04.019](http://dx.doi.org/10.1016/j.ajog.2016.04.019) 62. Zheng X-Z , Qin X-Y , Chen S-W , et al . Heterozygous/dispermic complete mole confers a significantly higher risk for post-molar gestational trophoblastic disease. Modern Pathology 2020;33:1979–88.[doi:10.1038/s41379-020-0566-4](http://dx.doi.org/10.1038/s41379-020-0566-4) 63. Khawajkie Y , Mechtouf N , Nguyen NMP , et al . Comprehensive analysis of 204 sporadic hydatidiform moles: revisiting risk factors and their correlations with the molar genotypes. Mod Pathol 2020;33:880–92.[doi:10.1038/s41379-019-0432-4](http://dx.doi.org/10.1038/s41379-019-0432-4) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31857680 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 64. Buza N . Gestational trophoblastic disease: contemporary diagnostic approach. Surg Pathol Clin 2022;15:197–218.[doi:10.1016/j.path.2022.02.002](http://dx.doi.org/10.1016/j.path.2022.02.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/35715158 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 65. Fukunaga M , Endo Y , Ushigome S . Clinicopathologic study of tetraploid hydropic villous tissues. Arch Pathol Lab Med 1996;120:569–72.pmid:http://www.ncbi.nlm.nih.gov/pubmed/8651859 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=8651859&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 66. Bynum J , Batista D , Xian R , et al . Tetraploid partial hydatidiform moles: molecular genotyping and determination of parental contributions. J Mol Diagn 2020;22:90–100.[doi:10.1016/j.jmoldx.2019.09.006](http://dx.doi.org/10.1016/j.jmoldx.2019.09.006) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31669228 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 67. Fisher RA , Hodges MD , Newlands ES . Familial recurrent hydatidiform mole: a review. J Reprod Med 2004;49:595–601.pmid:http://www.ncbi.nlm.nih.gov/pubmed/15457849 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=15457849&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000223565500003&link_type=ISI) 68. Murdoch S , Djuric U , Mazhar B , et al . Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 2006;38:300–2.[doi:10.1038/ng1740](http://dx.doi.org/10.1038/ng1740) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16462743 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/ng1740&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=16462743&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000235589600010&link_type=ISI) 69. Parry DA , Logan CV , Hayward BE , et al . Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 2011;89:451–8.[doi:10.1016/j.ajhg.2011.08.002](http://dx.doi.org/10.1016/j.ajhg.2011.08.002) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21885028 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ajhg.2011.08.002&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=21885028&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 70. Aguinaga M , Rezaei M , Monroy I , et al . The genetics of recurrent hydatidiform moles in Mexico: further evidence of a strong founder effect for one mutation in NLRP7 and its widespread. J Assist Reprod Genet 2021;38:1879–86.[doi:10.1007/s10815-021-02132-1](http://dx.doi.org/10.1007/s10815-021-02132-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33751332 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 71. Fisher RA , Khatoon R , Paradinas FJ , et al . Repetitive complete hydatidiform mole can be biparental in origin and either male or female. Hum Reprod 2000;15:594–8.[doi:10.1093/humrep/15.3.594](http://dx.doi.org/10.1093/humrep/15.3.594) pmid:http://www.ncbi.nlm.nih.gov/pubmed/10686202 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1093/humrep/15.3.594&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10686202&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000085670900018&link_type=ISI) 72. Tilghman SM . The SINS of the fathers and mothers: genomic imprinting in mammalian development. Cell 1999;96:185–93.[doi:10.1016/s0092-8674(00)80559-0](http://dx.doi.org/10.1016/s0092-8674(00)80559-0) pmid:http://www.ncbi.nlm.nih.gov/pubmed/9988214 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0092-8674(00)80559-0&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=9988214&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000078252200003&link_type=ISI) 73. Hui P , Buza N , Murphy KM , et al . Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol 2017;12:449–85.[doi:10.1146/annurev-pathol-052016-100237](http://dx.doi.org/10.1146/annurev-pathol-052016-100237) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28135560 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 74. Slim R , Wallace EP , Evan P . NLRP7 and the genetics of hydatidiform moles: recent advances and new challenges. Front Immunol 2013;4:1–6.[doi:10.3389/fimmu.2013.00242](http://dx.doi.org/10.3389/fimmu.2013.00242) [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.3389/fimmu.2013.00185&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=23355837&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 75. Golubovsky MD . Postzygotic diploidization of triploids as a source of unusual cases of mosaicism, chimerism and twinning. Hum Reprod 2003;18:236–42.[doi:10.1093/humrep/deg060](http://dx.doi.org/10.1093/humrep/deg060) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12571155 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1093/humrep/deg060&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=12571155&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000181040800002&link_type=ISI) 76. WHO Classification of Tumours Editorial board ed. World Health Organisation Classification of Tumours. Female genital tumours. 5th ed. Lyon: IARC Press, 2020. 77. Berkowitz RS , Horowitz DP , Elias KM . Hydatidiform mole: epidemiology, clinical manifestations and diagnosis. Waltham, MA: UpToDate, Post TW(Ed) UpToDate, 2022. 78. Kaur B , Short D , Fisher RA , et al . Atypical placental site nodule (APSN) and association with malignant gestational trophoblastic disease; a clinicopathologic study of 21 cases. Int J Gynecol Pathol 2015;34:152–8.[doi:10.1097/PGP.0000000000000128](http://dx.doi.org/10.1097/PGP.0000000000000128) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25675185 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 79. Magnaeva A , Asaturova A , Tregubova A , et al . Non-gestational choriocarcinoma of ovary: Clinico-morphological features and diagnostic value of DNA polymorphism study. Hum Pathol Reports 2022;27:300593.[doi:10.1016/j.hpr.2022.300593](http://dx.doi.org/10.1016/j.hpr.2022.300593) 80. Lurain JR . Gestational trophoblastic disease II: classification and management of gestational trophoblastic neoplasia. Am J Obstet Gynecol 2011;204:11–18.[doi:10.1016/j.ajog.2010.06.072](http://dx.doi.org/10.1016/j.ajog.2010.06.072) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20739008 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ajog.2010.06.072&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=20739008&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 81. Stenman U-H , Alfthan H , Hotakainen K . Human chorionic gonadotropin in cancer. Clin Biochem 2004;37:549–61.[doi:10.1016/j.clinbiochem.2004.05.008](http://dx.doi.org/10.1016/j.clinbiochem.2004.05.008) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15234236 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.clinbiochem.2004.05.008&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=15234236&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000222746800007&link_type=ISI) 82. Banet N , DeScipio C , Murphy KM , et al . Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol 2014;27:238–54.[doi:10.1038/modpathol.2013.143](http://dx.doi.org/10.1038/modpathol.2013.143) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23887308 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/modpathol.2013.143&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=23887308&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000330910100009&link_type=ISI) 83. Sebire NJ , May PC , Kaur B , et al . Abnormal villous morphology mimicking a hydatidiform mole associated with paternal trisomy of chromosomes 3,7,8 and unipaternal disomy of chromosome 11. Diagn Pathol 2016;11:20.[doi:10.1186/s13000-016-0471-9](http://dx.doi.org/10.1186/s13000-016-0471-9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26846439 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 84. Fisher RA , Nucci MR , Thaker HM , et al . Complete hydatidiform mole retaining a chromosome 11 of maternal origin: molecular genetic analysis of a case. Mod Pathol 2004;17:1155–60.[doi:10.1038/modpathol.3800175](http://dx.doi.org/10.1038/modpathol.3800175) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15314611 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/modpathol.3800175&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=15314611&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000223443400016&link_type=ISI) 85. Gaillot-Durand L , Patrier S , Aziza J , et al . p57-discordant villi in hydropic products of conception: a clinicopathological study of 70 cases. Hum Pathol 2020;101:18–30.[doi:10.1016/j.humpath.2020.04.011](http://dx.doi.org/10.1016/j.humpath.2020.04.011) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32387104 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 86. Lewis GH , DeScipio C , Murphy KM , et al . Characterization of androgenetic/biparental mosaic/chimeric conceptions, including those with a molar component: morphology, p57 immnohistochemistry, molecular genotyping, and risk of persistent gestational trophoblastic disease. Int J Gynecol Pathol 2013;32:199–214.[doi:10.1097/PGP.0b013e3182630d8c](http://dx.doi.org/10.1097/PGP.0b013e3182630d8c) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23370656 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1097/PGP.0b013e3182630d8c&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=23370656&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 87. Kaiser-Rogers KA , McFadden DE , Livasy CA , et al . Androgenetic/biparental mosaicism causes placental mesenchymal dysplasia. J Med Genet 2006;43:187–92.[doi:10.1136/jmg.2005.033571](http://dx.doi.org/10.1136/jmg.2005.033571) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15908568 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToiam1lZGdlbmV0IjtzOjU6InJlc2lkIjtzOjg6IjQzLzIvMTg3IjtzOjQ6ImF0b20iO3M6MjQ6Ii9ibWptZWQvMS8xL2UwMDAzMjEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 88. Allias F , Lebreton F , Collardeau-Frachon S , et al . Immunohistochemical expression of p57 in placental vascular proliferative disorders of preterm and term placentas. Fetal Pediatr Pathol 2009;28:9–23.[doi:10.1080/15513810802545350](http://dx.doi.org/10.1080/15513810802545350) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19116812 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 89. Carreon CK , Roberts DJ . Discovery of inverted discordant p57 expression in random clusters of dysmorphic chorionic villi of third trimester placentas suggests a more common occurrence of such phenomenon than initially described. Placenta 2021;104:295–302.[doi:10.1016/j.placenta.2020.12.011](http://dx.doi.org/10.1016/j.placenta.2020.12.011) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33524852 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 90. Ronnett BM . Hydatidiform moles: ancillary techniques to refine diagnosis. Arch Pathol Lab Med 2018;142:1485–502.[doi:10.5858/arpa.2018-0226-RA](http://dx.doi.org/10.5858/arpa.2018-0226-RA) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30500280 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 91. Furtado LV , Paxton CN , Jama MA , et al . Diagnostic utility of microsatellite genotyping for molar pregnancy testing. Arch Pathol Lab Med 2013;137:55–63.[doi:10.5858/arpa.2012-0047-OA](http://dx.doi.org/10.5858/arpa.2012-0047-OA) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23276175 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.5858/arpa.2012-0047-OA&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=23276175&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 92. Cole LA . Hyperglycosylated hCG, a review. Placenta 2010;31:653–64.[doi:10.1016/j.placenta.2010.06.005](http://dx.doi.org/10.1016/j.placenta.2010.06.005) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20619452 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.placenta.2010.06.005&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=20619452&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000281368800001&link_type=ISI) 93. Stenman U-H , Tiitinen A , Alfthan H , et al . The classification, functions and clinical use of different isoforms of hCG. Hum Reprod Update 2006;12:769–84.[doi:10.1093/humupd/dml029](http://dx.doi.org/10.1093/humupd/dml029) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16877746 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1093/humupd/dml029&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=16877746&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000241429600008&link_type=ISI) 94. McMahon LM , Stewart WW , Cuthill L . Human chorionic gonadotrophin assays to monitor GTD. Best Pract Res Clin Obstet Gynaecol 2021;74:109–21.[doi:10.1016/j.bpobgyn.2021.05.001](http://dx.doi.org/10.1016/j.bpobgyn.2021.05.001) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34074603 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 95. Cole LA . Immunoassay of human chorionic gonadotropin, its free subunits, and metabolites. Clin Chem 1997;43:2233–43.[doi:10.1093/clinchem/43.12.2233](http://dx.doi.org/10.1093/clinchem/43.12.2233) pmid:http://www.ncbi.nlm.nih.gov/pubmed/9439438 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmNoZW0iO3M6NToicmVzaWQiO3M6MTA6IjQzLzEyLzIyMzMiO3M6NDoiYXRvbSI7czoyNDoiL2Jtam1lZC8xLzEvZTAwMDMyMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 96. Harvey RA , Mitchell HDC , Stenman U-H , et al . Differences in total human chorionic gonadotropin immunoassay analytical specificity and ability to measure human chorionic gonadotropin in gestational trophoblastic disease and germ cell tumors. J Reprod Med 2010;55:285–95.pmid:http://www.ncbi.nlm.nih.gov/pubmed/20795340 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=20795340&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 97. Bristow A , Berger P , Bidart J-M , et al . Establishment, value assignment, and characterization of new who reference reagents for six molecular forms of human chorionic gonadotropin. Clin Chem 2005;51:177–82.[doi:10.1373/clinchem.2004.038679](http://dx.doi.org/10.1373/clinchem.2004.038679) pmid:http://www.ncbi.nlm.nih.gov/pubmed/15514095 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmNoZW0iO3M6NToicmVzaWQiO3M6ODoiNTEvMS8xNzciO3M6NDoiYXRvbSI7czoyNDoiL2Jtam1lZC8xLzEvZTAwMDMyMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 98. Sturgeon CM , Berger P , Bidart J-M , et al . Differences in recognition of the 1st WHO international reference reagents for hCG-related isoforms by diagnostic immunoassays for human chorionic gonadotropin. Clin Chem 2009;55:1484–91.[doi:10.1373/clinchem.2009.124578](http://dx.doi.org/10.1373/clinchem.2009.124578) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19541864 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmNoZW0iO3M6NToicmVzaWQiO3M6OToiNTUvOC8xNDg0IjtzOjQ6ImF0b20iO3M6MjQ6Ii9ibWptZWQvMS8xL2UwMDAzMjEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 99. Lurain JR . Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol 2010;203:531–9.[doi:10.1016/j.ajog.2010.06.073](http://dx.doi.org/10.1016/j.ajog.2010.06.073) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20728069 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ajog.2010.06.073&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=20728069&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 100. Sturgeon CM , Viljoen A . Analytical error and interference in immunoassay: minimizing risk. Ann Clin Biochem 2011;48:418–32.[doi:10.1258/acb.2011.011073](http://dx.doi.org/10.1258/acb.2011.011073) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21750113 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1258/acb.2011.011073&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=21750113&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 101. Ward G , Simpson A , Boscato L , et al . The investigation of interferences in immunoassay. Clin Biochem 2017;50:1306–11.[doi:10.1016/j.clinbiochem.2017.08.015](http://dx.doi.org/10.1016/j.clinbiochem.2017.08.015) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28847718 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.clinbiochem.2017.08.015&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 102. Lavavi H , Neri ABJ . “Hook effect” in complete hydatiform molar pregnancy: a falsely low level of beta-HCG. Obs Gynecol 1993;82:720–1. 103. Ngu S-F , Chan KKL . Management of chemoresistant and quiescent gestational trophoblastic disease. Curr Obstet Gynecol Rep 2014;3:84–90.[doi:10.1007/s13669-013-0071-6](http://dx.doi.org/10.1007/s13669-013-0071-6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24533232 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 104. Patel KK , Qavi AJ , Hock KG , et al . Establishing reference intervals for hCG in postmenopausal women. Clin Biochem 2017;50:234–7.[doi:10.1016/j.clinbiochem.2016.11.017](http://dx.doi.org/10.1016/j.clinbiochem.2016.11.017) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27876610 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.clinbiochem.2016.11.017&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 105. Snyder JA , Haymond S , Parvin CA , et al . Diagnostic considerations in the measurement of human chorionic gonadotropin in aging women. Clin Chem 2005;51:1830–5.[doi:10.1373/clinchem.2005.053595](http://dx.doi.org/10.1373/clinchem.2005.053595) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16099935 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiY2xpbmNoZW0iO3M6NToicmVzaWQiO3M6MTA6IjUxLzEwLzE4MzAiO3M6NDoiYXRvbSI7czoyNDoiL2Jtam1lZC8xLzEvZTAwMDMyMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 106. Cole LA . Familial hCG syndrome. J Reprod Immunol 2012;93:52–7.[doi:10.1016/j.jri.2011.11.001](http://dx.doi.org/10.1016/j.jri.2011.11.001) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22188758 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.jri.2011.11.001&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=22188758&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 107. Rotmensch S , Cole LA . False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations. Lancet 2000;355:712–5.[doi:10.1016/S0140-6736(00)01324-6](http://dx.doi.org/10.1016/S0140-6736(00)01324-6) pmid:http://www.ncbi.nlm.nih.gov/pubmed/10703803 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/S0140-6736(00)01324-6&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10703803&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000085615600013&link_type=ISI) 108. Seckl MJ , Ghorani E . Progress to international harmonisation of care and future developments. Best Pract Res Clin Obstet Gynaecol 2021;74:159–67.[doi:10.1016/j.bpobgyn.2021.05.006](http://dx.doi.org/10.1016/j.bpobgyn.2021.05.006) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34119435 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 109. Lawrie TA , Alazzam M , Tidy J . First-Line chemotherapy in low-risk gestational trophoblastic neoplasia. Cochrane Database Syst Rev 2019;2016:CD007102.[doi:10.1002/14651858.CD007102.pub4](http://dx.doi.org/10.1002/14651858.CD007102.pub4) 110. Golfier F , Clerc J , Hajri T , et al . Contribution of referent pathologists to the quality of trophoblastic diseases diagnosis. Hum Reprod 2011;26:2651–7.[doi:10.1093/humrep/der265](http://dx.doi.org/10.1093/humrep/der265) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21840909 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1093/humrep/der265&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=21840909&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 111. Kohorn EI . Worldwide survey of the results of treating gestational trophoblastic disease. J Reprod Med 2014;59:145–53.pmid:http://www.ncbi.nlm.nih.gov/pubmed/24724223 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 112. Freitas F , Braga A , Viggiano M , et al . Gestational trophoblastic neoplasia lethality among Brazilian women: a retrospective national cohort study. Gynecol Oncol 2020;158:452–9.[doi:10.1016/j.ygyno.2020.04.704](http://dx.doi.org/10.1016/j.ygyno.2020.04.704) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 113.NCCP. Diagnosis, staging and treatment of patients with gestational trophoblastic disease: National Clinical Guideline No. 13. Dep Heal Irel (An Roinn Slainte) [Internet], 2022. Available: [https://health.gov.ie/wp-content/uploads/2015/12/GTD-Guideline-Full_FINAL-APPROVED-FOR-WEB.pdf](https://health.gov.ie/wp-content/uploads/2015/12/GTD-Guideline-Full_FINAL-APPROVED-FOR-WEB.pdf) 114. Coyle C , Short D , Jackson L , et al . What is the optimal duration of human chorionic gonadotrophin surveillance following evacuation of a molar pregnancy? A retrospective analysis on over 20,000 consecutive patients. Gynecol Oncol 2018;148:254–7.[doi:10.1016/j.ygyno.2017.12.008](http://dx.doi.org/10.1016/j.ygyno.2017.12.008) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29229282 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 115. Albright BB , Shorter JM , Mastroyannis SA , et al . Gestational trophoblastic neoplasia after human chorionic gonadotropin normalization following molar pregnancy: a systematic review and meta-analysis. Obstet Gynecol 2020;135:12–23.[doi:10.1097/AOG.0000000000003566](http://dx.doi.org/10.1097/AOG.0000000000003566) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31809433 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 116. Albright BB , Myers ER , Moss HA , et al . Surveillance for gestational trophoblastic neoplasia following molar pregnancy: a cost-effectiveness analysis. Am J Obstet Gynecol 2021;225:513.e1–513.e19.[doi:10.1016/j.ajog.2021.05.031](http://dx.doi.org/10.1016/j.ajog.2021.05.031) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34058170 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 117. Earp KE , Hancock BW , Short D , et al . Do we need post-pregnancy screening with human chorionic gonadotrophin after previous hydatidiform mole to identify patients with recurrent gestational trophoblastic disease? Eur J Obstet Gynecol Reprod Biol 2019;234:117–9.[doi:10.1016/j.ejogrb.2018.12.029](http://dx.doi.org/10.1016/j.ejogrb.2018.12.029) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30684876 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 118. Braga A , Mora P , de Melo AC , et al . Challenges in the diagnosis and treatment of gestational trophoblastic neoplasia worldwide. World J Clin Oncol 2019;10:28–37.[doi:10.5306/wjco.v10.i2.28](http://dx.doi.org/10.5306/wjco.v10.i2.28) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30815369 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 119. Powles T , Savage PM , Stebbing J , et al . A comparison of patients with relapsed and chemo-refractory gestational trophoblastic neoplasia. Br J Cancer 2007;96:732–7.[doi:10.1038/sj.bjc.6603608](http://dx.doi.org/10.1038/sj.bjc.6603608) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17299394 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/sj.bjc.6603608&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=17299394&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000244715400009&link_type=ISI) 120.Faculty of Sexual and Reproductive Healthcare. Contraception after pregnancy. FSRH Guidel Exec Summ, 2017: 1–18. 121. Costa HLFF , Doyle P . Influence of oral contraceptives in the development of post-molar trophoblastic neoplasia--a systematic review. Gynecol Oncol 2006;100:579–85.[doi:10.1016/j.ygyno.2005.09.031](http://dx.doi.org/10.1016/j.ygyno.2005.09.031) pmid:http://www.ncbi.nlm.nih.gov/pubmed/16297971 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ygyno.2005.09.031&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=16297971&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000235738800021&link_type=ISI) 122. Dantas PRS , Maestá I , Filho JR , et al . Does hormonal contraception during molar pregnancy follow-up influence the risk and clinical aggressiveness of gestational trophoblastic neoplasia after controlling for risk factors? Gynecol Oncol 2017;147:364–70.[doi:10.1016/j.ygyno.2017.09.007](http://dx.doi.org/10.1016/j.ygyno.2017.09.007) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28927899 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 123. Blagden SP , Foskett MA , Fisher RA , et al . The effect of early pregnancy following chemotherapy on disease relapse and foetal outcome in women treated for gestational trophoblastic tumours. Br J Cancer 2002;86:26–30.[doi:10.1038/sj.bjc.6600041](http://dx.doi.org/10.1038/sj.bjc.6600041) pmid:http://www.ncbi.nlm.nih.gov/pubmed/11857007 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/sj.bjc.6600041&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=11857007&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000174150200007&link_type=ISI) 124. Maher GJ , Fisher RA , Kaur B , et al . Sensitive screening of single nucleotide polymorphisms in cell free DNA for diagnosis of gestational tumours. NPJ Genom Med 2022;7:1–8.[doi:10.1038/s41525-022-00297-x](http://dx.doi.org/10.1038/s41525-022-00297-x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/35396509 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1038/s41525-021-00279-5&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 125. Openshaw MR , Harvey RA , Sebire NJ , et al . Circulating cell free DNA in the diagnosis of trophoblastic tumors. EBioMedicine 2016;4:146–52.[doi:10.1016/j.ebiom.2015.12.022](http://dx.doi.org/10.1016/j.ebiom.2015.12.022) 126. Sunde L , Singh R , Ravn K , et al . Hydatidiform mole diagnostics using circulating gestational trophoblasts isolated from maternal blood. Mol Genet Genomic Med 2021;9:1–7.[doi:10.1002/mgg3.1565](http://dx.doi.org/10.1002/mgg3.1565) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33306861 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 127. Rahat B , Sharma R , Bagga R , et al . Imbalance between matrix metalloproteinases and their tissue inhibitors in preeclampsia and gestational trophoblastic diseases. Reproduction 2016;152:11–22.[doi:10.1530/REP-16-0060](http://dx.doi.org/10.1530/REP-16-0060) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27256632 [Abstract/FREE Full Text](http://bmjmedicine.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoicmVwcm9kIjtzOjU6InJlc2lkIjtzOjg6IjE1Mi8xLzExIjtzOjQ6ImF0b20iO3M6MjQ6Ii9ibWptZWQvMS8xL2UwMDAzMjEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 128. Singh M , Kindelberger D , Nagymanyoki Z , et al . Matrix metalloproteinases and their inhibitors and inducer in gestational trophoblastic diseases and normal placenta. Gynecol Oncol 2011;122:178–82.[doi:10.1016/j.ygyno.2011.03.025](http://dx.doi.org/10.1016/j.ygyno.2011.03.025) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21514631 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ygyno.2011.03.025&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=21514631&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 129. Berkowitz RS , Goldstein DP . Current advances in the management of gestational trophoblastic disease. Gynecol Oncol 2013;128:3–5.[doi:10.1016/j.ygyno.2012.07.116](http://dx.doi.org/10.1016/j.ygyno.2012.07.116) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22846466 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=22846466&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 130. Knöfler M , Pollheimer J . Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 2013;4:1–14.[doi:10.3389/fgene.2013.00190](http://dx.doi.org/10.3389/fgene.2013.00190) [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.3389/fgene.2013.00024&link_type=DOI) 131. Harvey RA , Elias KM , Lim A , et al . Uterine artery Pulsatility index and serum BMP-9 predict resistance to methotrexate therapy in gestational trophoblastic neoplasia: a cohort study. Curr Probl Cancer 2021;45:100622.[doi:10.1016/j.currproblcancer.2020.100622](http://dx.doi.org/10.1016/j.currproblcancer.2020.100622) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32800689 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 132. Hoeijmakers YM , Eysbouts YK , Massuger LFAG , et al . Early prediction of post-molar gestational trophoblastic neoplasia and resistance to methotrexate, based on a single serum human chorionic gonadotropin measurement. Gynecol Oncol 2021;163:531–7.[doi:10.1016/j.ygyno.2021.09.016](http://dx.doi.org/10.1016/j.ygyno.2021.09.016) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34602288 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 133. Ghorani E , Kaur B , Fisher RA , et al . Pembrolizumab is effective for drug-resistant gestational trophoblastic neoplasia. Lancet 2017;390:2343–5.[doi:10.1016/S0140-6736(17)32894-5](http://dx.doi.org/10.1016/S0140-6736(17)32894-5) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29185430 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 134. You B , Bolze P-A , Lotz J-P , et al . Avelumab in patients with gestational trophoblastic tumors with resistance to single-agent chemotherapy: cohort a of the TROPHIMMUN phase II trial. J Clin Oncol 2020;38:3129–37.[doi:10.1200/JCO.20.00803](http://dx.doi.org/10.1200/JCO.20.00803) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32716740 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 135. Cheng H , Zong L , Kong Y , et al . Camrelizumab plus apatinib in patients with high-risk chemorefractory or relapsed gestational trophoblastic neoplasia (cap 01): a single-arm, open-label, phase 2 trial. Lancet Oncol 2021;22:1609–17.[doi:10.1016/S1470-2045(21)00460-5](http://dx.doi.org/10.1016/S1470-2045(21)00460-5) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34624252 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 136. Braga A , Paiva G , Ghorani E , et al . Predictors for single-agent resistance in FIGO score 5 or 6 gestational trophoblastic neoplasia: a multicentre, retrospective, cohort study. Lancet Oncol 2021;22:1188–98.[doi:10.1016/S1470-2045(21)00262-X](http://dx.doi.org/10.1016/S1470-2045(21)00262-X) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34181884 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 137. Georgiou M , Ntavelou P , Stokes W , et al . Atr and CDK4/6 inhibition target the growth of methotrexate-resistant choriocarcinoma. Oncogene 2022;41:2540–54.[doi:10.1038/s41388-022-02251-8](http://dx.doi.org/10.1038/s41388-022-02251-8) pmid:http://www.ncbi.nlm.nih.gov/pubmed/35301407 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 138. Wenzel L , Berkowitz RS , Habbal R , et al . Predictors of quality of life among long-term survivors of gestational trophoblastic disease. J Reprod Med 2004;49:589–94.pmid:http://www.ncbi.nlm.nih.gov/pubmed/15457848 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=15457848&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) [Web of Science](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=000223565500002&link_type=ISI) 139. Ireson J , Jones G , Winter MC , et al . Systematic review of health-related quality of life and patient-reported outcome measures in gestational trophoblastic disease: a parallel synthesis approach. Lancet Oncol 2018;19:e56–64.[doi:10.1016/S1470-2045(17)30686-1](http://dx.doi.org/10.1016/S1470-2045(17)30686-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29304364 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 140. Blok LJ , Frijstein MM , Eysbouts YK , et al . The psychological impact of gestational trophoblastic disease: a prospective observational multicentre cohort study. BJOG 2022;129:444–9.[doi:10.1111/1471-0528.16849](http://dx.doi.org/10.1111/1471-0528.16849) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34314567 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 141. Sarkar A , Sharma A , Saha PK . Re: the psychological impact of gestational trophoblastic disease: a prospective observational multicentre cohort study. BJOG 2022;129:831–2.[doi:10.1111/1471-0528.16986](http://dx.doi.org/10.1111/1471-0528.16986) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34755437 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 142. Blok LJ , Frijstein MM , Eysbouts YK , et al . Authors’ response re: The psychological impact of gestational trophoblastic disease: a prospective observational multicentre cohort study. BJOG 2022;129:833–4.[doi:10.1111/1471-0528.17001](http://dx.doi.org/10.1111/1471-0528.17001) 143. Joyce CM , Coulter J , Kenneally C , et al . Experience of women on the Irish national gestational trophoblastic disease registry. Eur J Obstet Gynecol Reprod Biol 2022;272:206–12.[doi:10.1016/j.ejogrb.2022.03.039](http://dx.doi.org/10.1016/j.ejogrb.2022.03.039) pmid:http://www.ncbi.nlm.nih.gov/pubmed/35367922 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 144. Ferreira EGV , Maestá I , Michelin OC , et al . Assessment of quality of life and psychologic aspects in patients with gestational trophoblastic disease. J Reprod Med 2009;54:239–44.pmid:http://www.ncbi.nlm.nih.gov/pubmed/19438166 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=19438166&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 145. Di Mattei V , Mazzetti M , Perego G , et al . Psychological aspects and fertility issues of GTD. Best Pract Res Clin Obstet Gynaecol 2021;74:53–66.[doi:10.1016/j.bpobgyn.2020.10.007](http://dx.doi.org/10.1016/j.bpobgyn.2020.10.007) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33176992 [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom) 146.FIGO Committee on Gynecologic Oncology. Current FIGO staging for cancer of the vagina, fallopian tube, ovary, and gestational trophoblastic neoplasia. Int J Gynaecol Obstet 2009;105:3–4.[doi:10.1016/j.ijgo.2008.12.015](http://dx.doi.org/10.1016/j.ijgo.2008.12.015) pmid:http://www.ncbi.nlm.nih.gov/pubmed/19322933 [CrossRef](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=10.1016/j.ijgo.2008.12.015&link_type=DOI) [PubMed](http://bmjmedicine.bmj.com/lookup/external-ref?access_num=19322933&link_type=MED&atom=%2Fbmjmed%2F1%2F1%2Fe000321.atom)