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KEY MESSAGES
 ⇒ Artificial intelligence has the potential to completely change the way 

physicians use electrocardiograms
 ⇒ Applications of electrocardiograms enabled by artificial intelligence could 

include electrocardiogram interpretation, screening for prevalent disease, 
prediction of future disease, and phenotyping disease

 ⇒ Advancements should be made with caution because of several 
potential pitfalls with the rapid growth of artificial intelligence enabled 
electrocardiogram applications

Artificial intelligence has the potential to 
completely change the way that physicians use the 
electrocardiogram, but caution must be applied, 
explain Sau and Ng

Artificial intelligence, machine learning, and deep 
learning
Artificial intelligence (AI) as a field has had exponen-
tial growth and interest in the past 10 years. Clinicians 
have been promised previously unheralded insights 
and predictive power at their fingertips. Here, we 
discuss the basic principles of AI, how this applies 
to the electrocardiogram (ECG), and potential pitfalls 
with the rapid growth of AI in healthcare.

AI has been used in electrocardiograph machines 
for many years to provide computer interpretation of 
the ECG findings. However, the outcomes are often 
inaccurate and generally have little clinical use. The 
development of AI has led to a vast array of tech-
niques that could completely change how we use the 
ECG.

A detailed overview of these topics has been 
covered in depth elsewhere.1 2 Briefly, AI is 
a branch of computer science dealing with 
machines performing tasks that usually would 
require human intelligence. Machine learning is 
a subbranch of AI and deals with the ability of 
machines to solve problems using inferences from 
data, rather than explicitly being programmed to 
accomplish a specific task.

Supervised versus unsupervised machine learning
Supervised machine learning is by far the most 
common form of machine learning. This form 
involves provision of labelled data and allowing the 
model to identify important features that relate the 
input data to the label. For example, an ECG could be 
labelled with ECG abnormalities, such as left bundle 
branch block, or with a cardiac diagnosis, such as left 
ventricular dysfunction, and the algorithm can learn 
to classify ECGs based on these labels. Conversely, 
unsupervised learning does not use labelled data. 

Instead, the goal of this type of learning is to iden-
tify common features in the input data that could 
be used to cluster data into similar groups. In the 
healthcare setting, unsupervised learning would 
most commonly be used to cluster patients into 
similar phenogroups that may have different clinical 
features or outcomes.

Traditional machine learning versus deep learning
Traditional machine learning involves human input 
for feature engineering. For example, a human might 
determine QRS duration to be an important feature 
for predicting left ventricular impairment. After 
feature engineering, various algorithms (including 
random forests as depicted in figure 1) can be used 
to learn from prespecified features and to then make 
classification or regression decisions.

Conversely, deep learning takes the entire input 
(eg, the whole 12 lead ECG as a time series) without 
any human input for feature engineering and derives 
unique features from the data. This process has 
important advantages in that features that may not 
be apparent to humans can be used by the algorithm. 
Deep learning architectures are built from models 
called neural networks. Neural networks are struc-
tured with multiple layers, most of which are hidden 
layers (that is, between in the input and output 
layers) that are used to make connections within the 
input data and determine complex relations between 
input and label. Figure 1 depicts examples of how AI, 
machine learning, and deep learning can be applied 
to ECGs. Figure  2 shows how data should be used 
in the development and evaluation of a machine 
learning model.

Advancing AI enabled ECGs
Deep learning to improve ECG interpretation
Traditional computerised ECG interpretation uses 
a set of criteria developed by humans to make clas-
sification decisions based on the ECG input. These 
criteria are generally created from reference ranges 
in a population. For example, the computer inter-
pretation on an ECG machine can be programmed 
to measure PR intervals, and where the PR interval 
is greater than 200 ms, the computer will make the 
diagnosis of first degree heart block. By contrast, the 
deep learning approach is able to identify important 
features from thousands of input ECGs and develop 
its own set of complex criteria for each diagnosis 
of interest. This more complex approach can be 
thought of as being analogous to how a clinician 
might develop skills in ECG reading over a career of 
ECG interpretation and clinical correlation. A deep 
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learning approach to ECG interpretation could be 
more accurate than a traditional computerised inter-
pretation,3 because ECG interpretations by deep 
neural networks might outperform skilled humans.4

Screening for prevalent disease
Given the relative ease and low cost of performing 
an ECG, an important potential evolution in the 
application of AI enabled ECG is detection of prev-
alent disease. This distinction to the application of 

interpretation above is because AI enabled ECGs 
may be able to detect pathology that standard ECG 
interpretation by a clinician may miss. A promi-
nent example is the impressive performance of AI 
enabled ECGs for the identification of asymptomatic 
left ventricular dysfunction (accuracy 85.7%, area 
under the receiver operating characteristics curve 
0.93).5 AI enabled ECGs have also been applied for 
aortic stenosis detection6 (0.85). The ubiquitous 
ECG also provides an opportunity for screening 
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Figure 1 | Examples of how artificial intelligence, machine learning, and deep learning can be applied to the ECG. 
Random forest is an ensemble of several uncorrelated decision trees, each using a random subset of features. 
Each tree makes a classification prediction, the class with the most trees with that prediction is the model’s final 
prediction. Principle component analysis (PCA) is a form of linear dimensionality reduction that can be applied, for 
example, to ECG measurements. PCA can be combined with clustering algorithms, such as K- means, to find clusters of 
patients who may have difference clinical features and outcomes. Neural networks are multilayered non- linear models 
that can be used to make connections within the input data and determine complex associations between input and 
label to make classification decisions. A variational autoencoder is a form of unsupervised deep learning where the 
network learns to compress the input into a latent space distribution before reconstructing and aiming to return to 
the same signal as the input. Variational autoencoders are often used for non- linear dimensionality reduction or 
removal of noise from signals. A single layer autoencoder with linear activation functions is almost equivalent to PCA. 
SCD=sudden cardiac death; SR=sinus rhythm; LBBB=left bundle block; PVC=premature ventricular contraction
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for rarer diseases that may otherwise go unde-
tected in current clinical practice. Hypertrophic 
cardiomyopathy by AI enabled ECG detection has 
achieved an impressive performance7(sensitivity 
87%, specificity 90%, 0.96). AI enabled ECGs have 
also been applied for amyloidosis (0.91)8 and peri-
partum cardiomyopathy detection9 (area under the 
receiver operating characteristics curve of 0.87- 0.92 
depending on ejection fraction cut- off). These deep 
neural networks are able to identify both features 
that are apparent to humans and novel features that 
had not previously been described.10 Application of 
AI enabled ECGs for screening could be particularly 
relevant in primary care, where diseases currently 
may go undetected and could trigger referral on for 
further testing. However, we note several poten-
tial limitations. Any screening approach would 
need to be applied to appropriate populations, for 
example, opportunistic screening for asymptomatic 
left ventricular dysfunction in the general popula-
tion may be appropriate given the high prevalence 
of the condition and the highly effective treatments 
that are available. By contrast, screening for rarer 
diseases without well established treatments, such 
as amyloidosis, is less likely to be beneficial. The 
potential harms of screening (including overdi-
agnosis and false positive diagnoses generating 
unnecessary additional testing) must be carefully 
considered and this approach needs evaluation in 
prospective clinical trials. Additionally, AI enabled 
ECG interpretation must be evaluated in an appro-
priate clinical context. For example, AI enabled 
ECGs may report evidence of aortic stenosis, but this 
finding may be incidental and not the cause of the 
patient’s symptoms.

Prediction of future disease
The ECG is generally used by clinicians to identify 
prevalent abnormalities. AI enabled ECGs, however, 
have the potential to identify patients at risk of 
future disease. A potentially impactful application 
is the prediction of future atrial fibrillation from the 
sinus rhythm ECG (30 day prediction,11 area under 
the receiver operating characteristics curve 0.87; 
five year prediction, 0.909).12 This prediction could 
guide targeted screening, such as prolonged rhythm 
monitoring or mobile health devices. Another appli-
cation of AI enabled ECG is to predict sudden cardiac 
arrest within 24 h13 (area under the receiver oper-
ating characteristics curve of 0.948 in an external 
dataset using 12 leads and 0.925 using a single 
lead I ECG). This screening might have the poten-
tial for use in a wearable device or implantable loop 
recorder in patients who are at an increased risk of 
cardiac arrest, but not sufficiently high risk enough 
to warrant implantable cardioverter defibrillator 
implantation. Although promising, further work 
is needed to evaluate potential applications of AI 
enabled ECG in this context.

Disease phenotyping
Use of the ECG for unsupervised learning has poten-
tial to identify important disease phenotypes that 
may not be apparent from human inspection of 
clinical data and the ECG. Currently patients are 
selected for cardiac resynchronisation therapy 
comparatively crudely, by identification of left or 
right bundle branch block and measurement of 
QRS duration. Unsupervised machine learning has 
been applied to the raw QRS waveforms of patients 
who had cardiac resynchronisation therapy devices 
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Figure 2 | Flow of data in a machine learning study. An internal dataset is typically split into three sets: training (Train), 
validation (Val), and testing (Test). Training and validation sets are used for model development before evaluation on 
the unseen internal test set. An external dataset is ideally used in addition to the internal test dataset to ensure that 
the model generalises well to a different population

 on A
pril 28, 2024 by guest. P

rotected by copyright.
http://bm

jm
edicine.bm

j.com
/

bm
jm

ed: first published as 10.1136/bm
jm

ed-2022-000193 on 31 July 2023. D
ow

nloaded from
 

http://bmjmedicine.bmj.com/


Sau A, Ng FS. BMJMED 2023;2:e000193. doi:10.1136/bmjmed-2022-0001934

OPEN ACCESSOPEN ACCESS

implanted for heart failure. Two prognostically 
important subgroups were identified, with impor-
tance beyond the crude parameters that we use 
today. The findings indicate unsupervised machine 
learning may be used to better identify patients who 
would benefit from cardiac resynchronisation treat-
ment.14 Unsupervised machine learning, in the form 
of a convolutional autoencoder, has also been used 
to predict nocturnal hypoglycaemia.15 An autoen-
coder (depicted in figure 1) attempts to compress the 
input signal into a latent representation of features 
(in this case, 20 or 50 neurons) and then decompress 
to create a signal as close to the original as possible.2 
Through this technique, the latent representation 
provides features that describe the input signal and 
can then be used for clustering or for a supervised 
machine learning task. The algorithm correctly iden-
tified clusters of ECGs based on glucose concentra-
tions with 90% accuracy.

Prospective validation of AI enabled ECG in clinical 
practice
Applications of AI enabled ECG have been extensively 
studied in retrospective datasets; however, prospec-
tive validation in clinical environments is important 
before clinical adoption. The first randomised clin-
ical trial of AI enabled ECGs versus usual care was 
completed in 2021.16 They applied the AI enabled 
ECG algorithm for asymptomatic left ventricular 
dysfunction detection previously described5 in a 
cluster randomised trial of 120 primary care teams 
(22 641 patients). Overall, the AI enabled ECG group 
had a 32% increased rate of low ejection fraction diag-
nosis (odds ratio 1.32 (95% confidence interval 1.01 
to 1.61), absolute diagnosis 2.1% v 1.6%) compared 
with usual care. AI enabled ECG could potentially be 
used in primary care to guide clinicians as to which 
patients should be referred for echocardiography. 
Importantly, echocardiogram use was not signifi-
cantly different between the groups, indicating that 

AI enabled ECG may be a cost- effective tool, although 
formal cost effectiveness analysis is required.

An observational study published in 2022 
reported on the application of a deep neural network 
for left ventricular dysfunction screening embedded 
within an ECG enabled stethoscope.17 By use of an 
ECG enabled stethoscope, participants had a single 
lead ECG recorded, the area under the receiver oper-
ating characteristics curve was 0.85 for detecting 
left ventricular ejection fraction of less than 40%. 
Embedding AI enabled ECG within the familiar steth-
oscope may further increase its usability through 
quick recordings that can be taken in all patients who 
are seen in person. Figure 3 shows how AI enabled 
ECG may be used in the near future to support deci-
sion making for clinicians by providing suggestions 
for further investigation and management in both 
the outpatient and emergency settings. Despite the 
great potential of AI enabled ECG, improved clinical 
outcomes have not been shown; future studies will 
need to address this.

Advancing with caution
Integration of AI into clinical workflows has the 
risk of important ethical issues. The World Health 
Organization has described six principles for the 
ethics and governance of artificial intelligence for 
health (Box 1),18 three of which we discuss.

Protecting human autonomy
The increasing role of AI in many fields, not just 
healthcare, risks the transfer of decision making 
power to machines. In healthcare, the risks are far 
too high, and many believe that humans must always 
have the final decision. The examples discussed in 
this review are predominantly about screening or 
identifying disease. In these scenarios, AI enabled 
ECG acts to enhance disease detection, where condi-
tions could otherwise be missed, and in each case, a 
confirmatory test would generally be required before 
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Figure 3 | A depiction of how AI enabled ECG may be used in the near future to guide tailored further investigation 
and management in both outpatient and emergency settings. Examples of potential applications of AI enabled ECG 
prediction in each setting are given, with how these predications may guide clinical management
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making any major changes to treatments. The poten-
tial exception to that is with respect to atrial fibril-
lation prediction. AI enabled ECG could be used to 
recommend pre- emptive anti- coagulation where the 
predicted risk of incident atrial fibrillation is particu-
larly high. Any such workflows would need to be 
supported by clinical trials showing such a practice 
is beneficial and should always involve human input 
and shared decision making.

Ensuring transparency, explainability, and 
intelligibility
One area of concern with deep learning models is 
the challenge in understanding reasons for the deci-
sion recommended by the model. Several methods, 
including saliency mapping, can partially overcome 
these limitations. A saliency map is an image where 
the brightness or colour of each pixel indicates how 
much of an impact that area of the image or signal has 
on predicting the outcome class. For example, a sali-
ency map for a neural network designed to identify 
left bundle branch block would be expected to high-
light the QRS of an ECG. However, no perfect method 
is available for explainability and all methods have 
important limitations.19 For example, saliency 
mapping is best suited to identifying incorrect foci 
for models rather than truly providing explainability. 
Using saliency mapping, a review of studies using AI 
models to detect covid- 19 from a chest radiograph 
showed that many models used erroneous features.20 
For example, parts of the image outside the lung 
fields such as the portable marker, which would 
generally reflect a more unwell patient, were used by 
the models to predict adverse outcomes.

Another thought is that interpretability is not 
required for adoption of AI models into clinical prac-
tice. In striving for explainability in our AI models, 
some people argue that we may limit machines to the 
level of reasoning that humans are capable of, and 
therefore deprive the world of the unique problem 
solving capabilities of AI.21 Furthermore, AI is held to 
higher standards than other tools used by clinicians. 
Several examples exist of medical treatments and 
procedures where the exact mechanism of benefit 

is not clearly understood but treatments are used 
extensively after favourable data was available from 
clinical trials.22 23 Human clinical decision might 
often escape explainability,24 so why should AI be 
held to this potentially unrealistic target? Human 
clinical decision making may also be influenced by 
unmeasured factors relating to human interaction, 
such as facial expressions that may convey anxiety 
or degree of pain. These factors would not be consid-
ered by most current AI models. The answer to this 
question is likely a compromise between these two 
extremes—some explainability in AI is necessary; 
however, requiring complete understanding of the 
AI model is probably an unrealistic goal that will 
stifle innovation if pursued rigorously.

Ensuring inclusiveness and equity
AI has the potential to both widen and close existing 
forms of bias and discrimination. Examples from 
image analysis from large datasets have shown 
poor performance on images of people from ethnic 
minorities, due to the largely white population used 
for training the AI model.25 On the contrary, other 
studies have shown that AI enabled ECG may in fact 
perform equally well for people from ethnic minori-
ties, even when they did not comprise a large propor-
tion of the training cohort.17 26. Rigorous testing must 
be used to ensure systemic biases are not introduced 
through application of AI enabled ECG.

The present situation
AI enabled ECG is not currently ready for clinical use, 
however, prospective clinical studies have shown 
much promise. Figure  3 depicts potential applica-
tions for AI enabled ECGs in both the outpatient and 
emergency settings. The earliest clinical applica-
tions of AI enabled ECGs are likely to be additive to 
current clinical pathways, for example, in screening 
for asymptomatic left ventricular dysfunction or for 
patients at high risk of occult atrial fibrillation. Yet, 
substantial work remains in order to fully realise the 
potential of AI enabled ECG.

Conclusion
Deep learning has the potential to completely change 
the use of the ECGs and provide hidden mechanistic 
and clinical insights. The use of AI enabled ECG 
could transform clinical care of patients with cardi-
ovascular disease, promoting early detection and 
tailored therapy. However, as with the implementa-
tion of all AI tools, great care must be taken to ensure 
the implementation of AI enabled ECG is done safely 
and ethically.
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BOX 1 | WORLD HEALTH ORGANIZATION PRIN-
CIPLES FOR THE ETHICS AND GOVERNANCE 
OF ARTIFICIAL INTELLIGENCE FOR HEALTH

 ⇒ Protecting human autonomy
 ⇒ Promoting human wellbeing and safety and the 

public interest
 ⇒ Ensuring transparency, explainability, and 

intelligibility
 ⇒ Fostering responsibility and accountability
 ⇒ Ensuring inclusiveness and equity
 ⇒ Promoting artificial intelligence that is 

responsive and sustainable
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