Discussion
In summary, we consider a sample to be representative of a target population if its results can be generalised to that target population either in estimate or in interpretation. Any statements made regarding the representativeness of the study need to make this further qualification. Is it the estimate obtained or the interpretation of the results that are generalisable to the target population? Researchers should also do what they can to safeguard their results from being applied incorrectly. Even in studies with a strong scientific rationale for generalising the interpretation of results to the target population, researchers might need to mention that the estimate obtained in the sample should not be naively generalised to the target population.
Stating which form of representativeness was the goal of the study might also be useful. In the example of the molnupiravir randomised controlled trial,7 generalising the interpretation regarding drug efficacy to the target population might have been the primary goal. Many trials have this same goal, because the investigators often over sample individuals at high risk for the outcome in order to increase the power of the study. (Even so, clinical trials have received some criticism that they rarely represent a more general target population.5) If it was possible, generalising the estimate to the target population would be useful for predicting how molnupiravir would perform in practice but might not be immediately required for the study results to be meaningful. Further studies would likely need to be conducted to generalise the interpretation to other target populations, such as children recently infected with SARS-CoV2.
Several points relate to defining representativeness and are worth discussing. Firstly, irrespective of the way in which a sample is representative, the target population must be clearly defined. Stating that a sample is representative is meaningless unless researchers specify what population it represents or its results are being applied to.5 As an example, we showed how specifying different target populations (all individuals v all unvaccinated individuals who were not in the hospital) for the molnupiravir randomised controlled trial had different implications for whether the results were generalisable in estimate.
Secondly, researchers must be clear about the assumptions required for generalising to the target population. When generalising the estimate, these assumptions might be made based on knowledge of whether the study was designed using a simple random sample or whether stratification by relevant key covariates is possible. When generalising the interpretation, the assumptions might be made based on a knowledge of basic scientific premises or the validity of a related animal model. If researchers attempted to generalise the interpretation but the scientific principles underlying that generalisation did not hold (eg, the validity of the animal model for describing human physiology), then the assumptions would be violated, and the inferences in the study would not be representative. In either case, the way to truly test whether the assumptions held would be to estimate the effect of interest in the target population. While we often generalise in estimate because designing a study in the target population would not be feasible, we generally consider such a study necessary to prove hypotheses regarding generalisation of interpretation, especially when the sample is highly removed from the target population (eg, cell line v human population).
Thirdly, a natural extension of generalising the (overall or stratum specific) estimate to a target population are methods to estimate the overall mean of an outcome or the average effect of a treatment on an outcome (rather than a stratum specific estimate) in the target population.5 13 14 While the study sample might not be representative of the target population as observed, it could be made representative by using methods for generalisability or transportability, such as weighting or standardization to control for the key covariates or effect measure modifiers that differ between the samples.15 These approaches require measuring and accounting for all relevant key covariates, meeting certain identifiability conditions, and often making model specification assumptions.13 14 Even further, any study that is representative in interpretation could theoretically be made representative in estimate if all relevant effect measure modifiers were measured and accounted for; however, that is not always possible when the study sample is distant from the target population (eg, laboratory mice to humans).
Fourthly, the concepts of representativeness and generalisability discussed above also relate to the term “applicability” used in certain risk-of-bias tools, such as the PROBAST and QUADAS.16 17 All concepts centre on the idea that it is important to assess a study and its results in terms of how well they can be related to some target population. While we discussed causal and descriptive studies in this article, the two tools mentioned apply this concept to predictive and diagnostic studies.
Finally, one question that has been raised is whether generalising the interpretation or the estimate is intrinsically more important for health research and for science broadly. It could be argued that generalising the interpretation is the primary aim of scientific inference and thus should be our goal in most studies.1 The underlying premise is that the goal of science is the discovery of universal knowledge about nature that will hold true in most instances. If we view health research from this viewpoint, then generalising the interpretation is what matters. By contrast, generalisation of the estimate can never be universal. The estimate obtained in a particular study sample will always be tied to a specific scientific or public health question, and the study design and will vary based on the distribution of key covariates across time and populations. However, to inform policies and interventions in the real world, we must be able to predict health outcomes in human populations beyond those we studied. Therefore, generalisation of the estimate (whether obtained via study design or analytical methods) is an important goal. A further argument could be that these endeavours of statistical inference are just as informative for science as the inferences above. Science can be about discovering laws of nature; it can also seek to understand particular facets of nature. For some areas of health research, such as epidemiology and other population health sciences, the facet of nature under study is disease as it occurs in humans at a population level, and true understanding of the disease under study will be contextualised by time, place, history, and social environment. Consideration for how these factors have changed from the original setting to some new time or target population and how these changes might affect the estimate obtained is critical.
While such theoretical debates are important, our comprehensive definition of representativeness does not treat either generalisation of estimate or interpretation as inherently more relevant. That evaluation largely depends on the research question and study design at hand. Health researchers both develop the universal knowledge related to the health of populations and investigate how that knowledge can be applied to improve the health of populations, and the two ends of the research spectrum are fundamentally linked. What is important, then, is that researchers are clear on the manner in which their results can be applied to the target population when they say their study is representative and the assumptions underlying that statement.