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ABSTRACT
Pulmonary hypertension is a progressive and often 
fatal cardiopulmonary condition characterised by 
increased pulmonary arterial pressure, structural 
changes in the pulmonary circulation, and the 
formation of vaso- occlusive lesions. These changes 
lead to increased right ventricular afterload, which 
often progresses to maladaptive right ventricular 
remodelling and eventually death. Pulmonary 
arterial hypertension represents one of the most 
severe and best studied types of pulmonary 
hypertension and is consistently targeted by drug 
treatments. The underlying molecular pathogenesis 
of pulmonary hypertension is a complex and 
multifactorial process, but can be characterised 
by several hallmarks: inflammation, impaired 
angiogenesis, metabolic alterations, genetic or 
epigenetic abnormalities, influence of sex and 
sex hormones, and abnormalities in the right 
ventricle. Current treatments for pulmonary arterial 
hypertension and some other types of pulmonary 
hypertension target pathways involved in the control 
of pulmonary vascular tone and proliferation; 
however, these treatments have limited efficacy on 
patient outcomes. This review describes key features 
of pulmonary hypertension, discusses current and 
emerging therapeutic interventions, and points 
to future directions for research and patient care. 
Because most progress in the specialty has been 
made in pulmonary arterial hypertension, this review 
focuses on this type of pulmonary hypertension. The 
review highlights key pathophysiological concepts 
and emerging therapeutic directions, targeting 
inflammation, cellular metabolism, genetics 
and epigenetics, sex hormone signalling, bone 
morphogenetic protein signalling, and inhibition of 
tyrosine kinase receptors.

Introduction
Definition, classification, and epidemiology of 
pulmonary hypertension
Pulmonary hypertension covers a group of cardiopul-
monary diseases defined at the Sixth World Symposium 
for Pulmonary Hypertension as a mean pulmonary 
artery pressure of >20 mm Hg, pulmonary artery occlu-
sion pressure ≤15 mm Hg, and pulmonary vascular 
resistance >3 Woods units (1 Woods unit=80 dynes × 
sec/cm5).1 Pulmonary hypertension is clinically divided 
into five groups: pulmonary arterial hypertension (group 
1), pulmonary hypertension caused by left heart disease 
(group 2), pulmonary hypertension caused by lung 
diseases, hypoxia, or both (group 3), chronic throm-
boembolic pulmonary hypertension and pulmonary 

hypertension caused by pulmonary artery obstruc-
tions (group 4), and pulmonary hypertension caused 
by unclear or multifactorial mechanisms (group 5).2 
Pulmonary hypertension caused by left heart disease 
(group 2) followed by pulmonary hypertension caused 
by chronic lung disease (group 3) comprise the largest 
population of patients with pulmonary hypertension 
worldwide (table 1).3

Pulmonary hypertension is characterised by 
progressive pulmonary vascular remodelling and, if 
left untreated, leads to right ventricular failure and 
death.4–6 Estimates of 1% of the global population 
and up to 10% of individuals aged >65 years with 
pulmonary hypertension have been reported.3 Many 
common conditions and diseases are complicated by 
pulmonary hypertension or right ventricular failure, 
or both, including HIV infection, chronic liver 
disease, connective tissue disease, congenital heart 
disease, schistosomiasis, heart failure with reduced 
ejection fraction, heart failure with preserved ejec-
tion fraction, valvular heart disease, chronic obstruc-
tive pulmonary disease, pulmonary fibrosis, sleep 
disordered breathing, pulmonary emboli, myelo-
proliferative disorders, chronic haemolysis, and end 
stage renal disease (table  1).4 7–10 The presence of 
pulmonary hypertension in all of these conditions is 
associated with worse outcomes.9 10

Among the five pulmonary hypertension groups, 
pulmonary arterial hypertension (group 1) is one of 
the most aggressive types of pulmonary hyperten-
sion.11 Because most of the progress in the specialty 
has been made in the research and clinical care of 
pulmonary arterial hypertension, this type of pulmo-
nary hypertension will be the main focus of this 
review. Pulmonary arterial hypertension arises spon-
taneously, hereditarily, or as a complication of liver 
cirrhosis, connective tissue disease, HIV infection, 
congenital heart disease, schistosomiasis, or drug 
and toxin use (table  1).11 Symptoms of pulmonary 
arterial hypertension and other types of pulmonary 
hypertension are non- specific, frequently leading to 
delays in diagnosis and treatment.

The first instance of pulmonary hypertension was 
reported in 1891 by Ernst von Romberg, whereas 
Paul Wood was the first to describe the clinical and 
haemodynamic features of pulmonary hyperten-
sion in 1952.12 13 The First World Symposium on 
Pulmonary Hypertension convened in Geneva in 
1973 and defined the disease, at that time known 
as primary pulmonary hypertension, clinically as 
a mean pulmonary artery pressure of >25 mm Hg 
at rest.14 This value was chosen rather arbitrarily 
because at that time, in healthy individuals, supine 
mean pulmonary artery pressure rarely exceeded 
15 mm Hg at rest, was affected minimally by age, 
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and almost never exceeded 20 mm Hg.14 This defini-
tion remained until the Sixth World Symposium on 
Pulmonary Hypertension in 2018, which redefined 
pulmonary hypertension as mean pulmonary artery 
pressure >20 mm Hg and added pulmonary vascular 
resistance ≥3 Woods units to the definition of all 
forms of precapillary pulmonary hypertension.1

More recently, the task force for the diagnosis 
and treatment of pulmonary hypertension of the 

European Society of Cardiology and the European 
Respiratory Society published guidelines further 
reducing the cut- off value for pulmonary vascular 
resistance to 2 Woods units, based on the available 
data on the upper limit of pulmonary vascular resist-
ance in healthy individuals.15 Although these lower 
cut- off values better reflect the normal ranges of 
pulmonary haemodynamic variables, they have not 
yet resulted in new therapeutic recommendations, 

Table 1 | Pulmonary hypertension: classification, epidemiology, haemodynamic characteristics, and treatments

Classification* Epidemiology
Haemodynamic 
characteristics† Treatment

Group 1‡
Idiopathic PAH
Heritable PAH
PAH induced by drugs or toxins
PAH associated with:
connective tissue disease, HIV infec-
tion, portal hypertension, congenital 
heart disease, schistosomiasis, 
pulmonary veno- occlusive disease- 
pulmonary capillary haemangiomato-
sis, persistent PH of the newborn

Incidence of 1.1- 7.5 patients/million 
adults/year.
Prevalence of 6.6- 26.0 patients/
million adults.3
Estimated >200 million people 
infected worldwide with Schistoso-
ma276; prevalence of Schistosoma 
PH understudied

Precapillary PH:
mPAP >20 mm Hg
PAWP ⩽15 mm Hg
PVR ⩾3 Woods 
units†

Pulmonary vasodilators
(phosphodiesterase type 5 inhibitors, 
endothelin receptor antagonists, 
soluble guanylate cyclase, prostacyclin 
and prostacyclin analogues, calcium 
channel blockers in responders to acute 
vasodilator challenge)

Group 2‡
Heart failure with preserved LVEF
Heart failure with reduced LVEF
Valvular heart disease
Congenital or acquired cardiovascular 
conditions leading to postcapillary PH

Most common form of PH, account-
ing for 65- 80% of patients with 3PH
PH affects >50% of patients with left 
ventricular heart failure277

Postcapillary PH
mPAP >20 mm Hg
PAWP >15 mm Hg
PVR <3 Woods units
Or combined 
precapillary and 
postcapillary PH
mPAP >20 mm Hg
PAWP >15 mm Hg
PVR 3 Woods units

Treat left heart disease
Maintain euvolaemia with diuretics, 
sodium, and fluid restriction
Control systemic hypertension

Group 3‡
Obstructive lung disease (ie, COPD- 
PH, OSA)
Restrictive lung disease (ie, ILD- PH)
Other lung disease with mixed restric-
tive or obstructive pattern
Hypoxia without lung disease includ-
ing high altitude
Developmental lung disorders

Second most common form of PH 
after left heart disease3

5- 25% of patients with mild to mod-
erate COPD; up to 90% in patients 
with severe COPD278 279

38- 80% in advanced idiopathic 
pulmonary fibrosis280–282

Precapillary PH:
mPAP >20 mm Hg
PAWP ⩽5 mm Hg
PVR ⩾3 Woods 
units†

Treat underlying disease
Supplemental oxygen or non- invasive 
positive pressure ventilation, or both, 
to maintain SpO2 ⩾90% and PaCO2 ⩽ 
40 mm Hg
Inhaled trepostinil (approved for ILD- PH 
only)

Group 4‡
Chronic thromboembolic PH
Malignant and non- malignant 
tumours
Arteritis without connective tissue 
disease
Congenital pulmonary artery stenosis
Parasites (hydatidosis)

Incidence of 2- 6 and prevalence of 
26- 38 patients/million adults283–285 Precapillary PH:

mPAP >20 mm Hg
PAWP ⩽15 mm Hg
PVR ⩾3 Woods 
units†

Treat underlying disease
For chronic thromboembolic PH:
Pulmonary thromboendarterectomy
Balloon pulmonary angioplasty
Pulmonary vasodilators (soluble guany-
late cyclase)

Group 5‡
Haematological disorders
Systemic and metabolic disorders
Sarcoidosis
Chronic renal failure
Fibrosing mediastinitis
Complex congenital heart disease

Mostly unknown
Prevalence of PH in sarcoidosis 
6- 20% at rest and up to 43% with 
exercise286

Predominantly 
precapillary PH, but 
includes postcapil-
lary and combined 
pre- and postcapil-
lary PH

Treat underlying disease
Pulmonary vasodilator treatment can be 
used off label in some patients

COPD=chronic obstructive pulmonary disease; COPD- PH=pulmonary hypertension related to COPD; ILD- PH=pulmonary hypertension related to interstitial 
lung disease; LVEF=left ventricular ejection fraction; mPAP=mean pulmonary arterial pressure; OSA=obstructive sleep apnoea; PaCO2=partial pressure of 
carbon dioxide in arterial blood; PAH=arterial hypertension; PAWP=pulmonary arterial wedge pressure; PH=pulmonary hypertension; PVR=pulmonary vascular 
resistance; SpO2=arterial oxygen saturation measured by pulse oximeter.
*According to the Sixth World Symposium on Pulmonary Hypertension.
†Defined by Sixth World Symposium on Pulmonary Hypertension, 2018. The 2022 European Respiratory Society- European Society of Cardiology guidelines 
suggest a cut- off for pulmonary vascular resistance of 2 Woods units.
‡Pulmonary hypertension is clinically divided into five groups: pulmonary arterial hypertension (group 1), pulmonary hypertension caused by left heart disease 
(group 2), pulmonary hypertension caused by lung diseases, hypoxia, or both (group 3), chronic thromboembolic pulmonary hypertension and pulmonary 
hypertension caused by pulmonary artery obstructions (group 4), and pulmonary hypertension caused by unclear or multifactorial mechanisms (group 5).
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and the efficacy of treatment of pulmonary arterial 
hypertension in patients with a pulmonary vascular 
resistance of 2- 3 Woods units or mean pulmonary 
artery pressure of 21- 24 mm Hg is unknown. The 
new haemodynamic definitions in the 2022 guide-
lines of the European Society of Cardiology- European 
Respiratory Society have yet to be accepted by all 
major pulmonary hypertension research and clinical 
entities in the US and internationally, and therefore 
in this review, we will continue to refer to the defini-
tions of the 2018 World Symposium on Pulmonary 
Hypertension.

The first medical treatment approved by the US 
Food and Drug Administration to treat pulmonary 
arterial hypertension was the synthetic prostacyclin, 
epoprostenol, in 1995.16–18 Progress was made in 
the following decades in identifying more causes of 
pulmonary arterial hypertension and establishing 
new diverse treatments. Currently, 14 drugs have 
been approved by the FDA. These drugs target vaso-
dilatory pathways, including the endothelin, nitric 
oxide, and prostacyclin pathways.18 These treat-
ments improve the symptoms and survival of patients 
with pulmonary arterial hypertension, but mortality 
remains high; the three year survival rate for patients 
with a high risk diagnosis is 28- 55%.19–21 In patients 
who have unsatisfactory responses to treatment 
despite vasodilator treatment, lung transplantation 
might be necessary but is associated with its own 
inherent high risks of morbidity and mortality.22 
Survival for patients with pulmonary hyperten-
sion associated with chronic lung disease has been 
reported to be even worse than for pulmonary arte-
rial hypertension.23 24

This review provides an overview of the patho-
physiology of pulmonary hypertension as it affects 
the lung and right ventricle. Most data on the patho-
physiology of pulmonary hypertension come from 
models of pulmonary arterial hypertension and from 
biospecimens of patients with pulmonary arterial 
hypertension, and many concepts established in 
the pathophysiology of pulmonary arterial hyper-
tension are also found in other types of pulmonary 
hypertension. Hence, in this review, we will focus on 
pulmonary arterial hypertension, but will discuss the 
intricacies of other types of pulmonary hypertension 
where relevant. We will then discuss the strengths 
and limitations of current therapeutic interventions, 
followed by emerging and promising new thera-
peutic strategies targeting new pathways. Finally, we 
will highlight current knowledge gaps in pulmonary 
arterial hypertension and pulmonary hypertension 
research.

 

Sources and selection criteria
Literature searches were performed from December 
2021 to December 2022. PubMed and Medline 

databases were searched from database concep-
tion to December 2022. We searched PubMed and 
Medline for papers in the English language with the 
search words pulmonary hypertension, pulmonary 
arterial hypertension, right ventricle, pathogenesis, 
treatment, pulmonary vasodilators, inflammation, 
metabolism, angiogenesis, sex hormones, bone 
morphogenetic receptor protein 2, proliferation, 
remodelling, and tyrosine kinase. These search 
words were used in various combinations. We read 
the abstracts of relevant titles to confirm their rele-
vance (impact of the paper on the specialty, journal 
impact factor, citation number, publication date), 
and the full papers were then extracted. References 
from extracted papers were checked for any further 
relevant papers.

General principles in pulmonary hypertension
The pulmonary circulation usually is of low resist-
ance, and pulmonary blood pressure is about a 
10th of systemic pressure.25 Pulmonary hyperten-
sion is diagnosed when mean pulmonary artery 
pressure is >20 mm Hg.11 The primary pathology in 
pulmonary arterial hypertension is a progressive 
and profound pulmonary vasculopathy character-
ised by vasoconstriction, vascular remodelling of 
all layers of the vessel wall, and in situ thrombosis. 
In the most advanced stage of the disease, patients 
have plexiform lesions, vascular alterations char-
acterised by complex vascular formations origi-
nating from remodelled pulmonary arteries.26 27 In 
group 2 pulmonary hypertension, left heart disease 
leads to increased pulmonary venous pressure and, 
ultimately, pulmonary hypertension.28 29 Vascular 
remodelling occurs as a consequence of increased 
venous pressure and increased shear stress, but 
typically is less pronounced than in pulmonary arte-
rial hypertension. Chronic obstructive or interstitial 
pulmonary disease are accompanied by destruction 
of the lung parenchyma and, consequently, reduc-
tion of alveolar- capillary density, resulting in group 
3 pulmonary hypertension.30 31 Hypoxic pulmonary 
vasoconstriction, fibrotic processes, and inflamma-
tion also contribute to vascular remodelling in group 
3 pulmonary hypertension.32 33

Group 4 pulmonary hypertension is caused by 
pulmonary emboli or pulmonary artery obstruc-
tions, and subsequent reductions in functional 
cross sectional area of the pulmonary vascular 
bed and increases in pulmonary vascular resist-
ance.34 35 Overperfusion of non- obstructed vessels 
with subsequent remodelling also contributes to 
the development of pulmonary hypertension in this 
context.36 The pathophysiology of group 5 pulmo-
nary hypertension is diverse and not fully under-
stood, but frequently includes a combination of the 
processes listed above. Also, chronic haemolysis 
with subsequent depletion of nitric oxide stores is 
a contributor to pulmonary hypertension related 
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to haemolytic anaemias in group 5 pulmonary 
hypertension.25

Hallmarks of pathophysiology of pulmonary arterial 
hypertension
The pathogenesis of pulmonary arterial hyperten-
sion is driven by the crosstalk between multiple cell 
types in the lung, including vascular cells, immune 
cells, and circulating cells. Pulmonary artery 
endothelial cells, pulmonary artery smooth muscle 
cells, and pulmonary artery fibroblasts are the 
major cells involved in the pathogenesis. Pulmonary 
artery endothelial cell dysfunction arises from 
several causes, such as shear stress, direct vascular 
injury, and intrinsic abnormalities.37 38 Endothelial 
dysfunction results in decreased production of vaso-
dilating agents (eg, nitric oxide and prostacyclin) 
and increased synthesis of procontractile mediators 
(eg, endothelin 1).39 Also, increased production of 
growth factors and proinflammatory cytokines stim-
ulate the proliferation of pulmonary artery smooth 
muscle cells and deposition and remodelling of the 
extracellular matrix.40

Abnormalities in the signalling pathways of trans-
forming growth factor β and bone morphogenetic 
receptor protein 2 are key drivers of the develop-
ment of pulmonary arterial hypertension (and, 
to some degree, also pulmonary hypertension). 
Bone morphogenetic receptor protein 2 is a major 
survival and homeostasis factor for pulmonary artery 
endothelial cells and pulmonary artery smooth 
muscle cells. Loss- of- function mutations in the bone 
morphogenetic receptor protein 2 gene (BMPR2) are 
responsible for heritable pulmonary arterial hyper-
tension in most (>80%) patients.41 These muta-
tions in BMPR2 promote abnormal proliferation of 
pulmonary artery endothelial cells and pulmonary 
artery smooth muscle cells. Decreased activation of 
the bone morphogenetic receptor protein 2 pathway 
has also been described in non- heritable types of 
pulmonary arterial hypertension.42 43 In contrast, 
increased activity of the transforming growth 
factor β pathway is a critical mediator of pulmo-
nary artery endothelial cell and pulmonary artery 
smooth muscle cell dysfunction in pulmonary arte-
rial hypertension.42 43 Many other molecular abnor-
malities have been described in pulmonary arterial 
hypertension and pulmonary hypertension but are 
beyond the scope of this review; these are reviewed 
elsewhere.18 42 43 In the following sections, we will 
highlight several key concepts important for the 
development and progression of pulmonary arterial 
hypertension and pulmonary hypertension.

Inflammation and immune dysregulation
Inflammation is a phenomenon commonly found 
in various types of pulmonary hypertension.44 A 
strong inflammatory response exists in pulmonary 
arterial hypertension associated with connective 

tissue disease, but substantial inflammation is also 
seen in idiopathic pulmonary arterial hypertension 
and hereditary pulmonary arterial hypertension. 
Robust immune responses are also seen in group 
3 pulmonary hypertension and chronic thrombo-
embolic pulmonary hypertension.45 46 Recently, a 
concept of immune phenotypes in pulmonary arte-
rial hypertension groups has emerged.47 Pulmonary 
artery endothelial cells and inflammatory cells are 
critical local sources and targets of chemokines and 
cytokines, leading to pulmonary vascular remod-
elling in pulmonary hypertension. Interleukin 6 
and interleukin 1β are prominent proinflammatory 
cytokines in pulmonary arterial hypertension and 
can directly control proliferation, migration, and 
differentiation of pulmonary artery endothelial cells, 
pulmonary artery smooth muscle cells, and immune 
cells.44 48–50 Autoantibodies and local lymph follicles 
have been implicated in promoting inflammation 
and immune activation in pulmonary arterial hyper-
tension.19 20

BMPR2 mutations increase levels of proinflam-
matory cytokines (eg, interleukin 1β, interleukin 
6).44 48 51 Similarly, a diminished bone morphoge-
netic receptor protein 2 signalling pathway in other 
forms of pulmonary arterial hypertension can lead 
to inappropriate expression of growth factors and 
proinflammatory responses in vascular cells, as 
described in experimental and human pulmonary 
arterial hypertension.44 51–53 Furthermore, BMPR2 
loss of function in pulmonary artery endothelial cells 
causes a reduction in the vasoprotective peptide, 
apelin,54 as well as increased levels of fibroblast 
growth factor 2, mitogen activated protein kinases 
activity, interleukin 1β, and interleukin 6.48 49 55 
Interleukin 1β and interleukin 6 can induce fibro-
blast growth factor 2 in pulmonary artery endothelial 
cells.50 Fibroblast growth factor 2 and interleukin 6 
produced and released by pulmonary artery endothe-
lial cells have an integral role in mediating prolifer-
ative responses of pulmonary artery smooth muscle 
cells and pulmonary artery fibroblasts.48 49 55

Patients with idiopathic pulmonary arterial hyper-
tension show increased serum levels of chemokines 
that induce recruitment and migration of leuco-
cytes.56–59 For example, C- C motif chemokine ligand 
5 (CCL5), also called regulated on activation, normal 
T cell expressed and secreted (RANTES), exerts 
chemotactic power on monocytes and T cells.60–62 
Furthermore, CCL5 can increase mitogenic activity 
through endothelin 1, thus inducing vasoconstric-
tion.61 63 CCL2, also known as monocyte chemoat-
tractant protein 1, is another chemokine involved 
in inflammation in pulmonary arterial hyperten-
sion.44 62 64 On stimulation by cytokines, such as 
interleukin 1β and interleukin 6, CCL2 is produced 
in several cell types, including monocytes, pulmo-
nary artery endothelial cells, and pulmonary artery 
smooth muscle cells, participates in recruitment 
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of monocytes to inflammation sites, and has a role 
in the proliferation and dedifferentiation of pulmo-
nary artery smooth muscle cells. Serum levels 
of interleukin 1β, interleukin 6, and monocyte 
chemoattractant protein 1 are raised in patients with 
idiopathic pulmonary arterial hypertension.44 46 62 64

Patients with severe idiopathic pulmonary arte-
rial hypertension show increased infiltration of the 
pulmonary vessel wall with macrophages,46 65 66 and 
T and B lymphocytes, suggesting a role for infiltra-
tion of immune cells in promoting vasoconstriction 
and lung vascular remodelling.44 62 67 68 Cytokines 
such as interleukin 1β, interleukin 6, and mono-
cyte chemoattractant protein 1 cause exaggerated 
contractility and proliferation of vascular cells.48 
Figure  1 provides an overview of the major inflam-
matory pathways involved in the pathogenesis of 
pulmonary arterial hypertension.

Based on the important role of inflamma-
tion in pulmonary arterial hypertension, several 
trials targeting components of the inflammatory 
cascade have been completed or are ongoing,69–71 
but the results so far have not been consistent. For 
example, a recent trial of rituximab in patients 
with scleroderma- pulmonary arterial hypertension 
showed a non- significant increase in the six minute 
walk distance test.71 The mixed results of treatments 
targeting inflammation might indicate heterogeneity 
in the study populations or in the time course or 
extent of the inflammatory process.

Changes in angiogenesis
Dysfunctional angiogenesis is a major contributor to 
the development of pulmonary arterial hypertension. 
Blood vessels in the lung are lined by a pulmonary 
artery endothelial cell monolayer that has a crucial role 
in maintaining vascular homeostasis, and changes in 
pulmonary artery endothelial cells caused by shear 
stress, toxins, or genetic abnormalities lead to dysfunc-
tional angiogenesis.72 Pulmonary artery endothelial 
cell dysfunction is a major characteristic of pulmonary 
arterial hypertension, and different altered pulmo-
nary artery endothelial cell phenotypes are described 
during progression of pulmonary arterial hypertension 
(figure  2). During the early stages of vascular injury, 
pulmonary artery endothelial cells are proapoptotic, 
leading to a loss of pulmonary microvessels.73–76 Among 
the cells that survive the first insult, an endothelial 
cell apoptosis resistant phenotype is postulated to 
then emerge,77 78 associated with a hyperproliferative 
phenotype that contributes to formation of plexiform 
lesions and obliteration of lung vessels.78–81 Finally, 
in the terminal stages of pulmonary arterial hyperten-
sion, pulmonary artery endothelial cells might shift to a 
senescent phenotype, making the disease irreversible.82

Pulmonary artery endothelial cell dysfunc-
tion is associated with reduced pericyte coverage 
on pulmonary microvessels.83 This reduction of 
endothelial- pericyte interactions is explained by 
defects in pericyte motility and polarity, leading 
to progressive small vessel loss.84 85 Dysfunctional 

T or B lymphocyte
Macrophage
Monocyte

Neutrophil
Smooth muscle cell
Endothelial cell

Pulmonary
vasculature

IL-1β
CCL2
CCL5

CCL2
CCL5

CCL5

SMC proliferation

MCP-1

IL-6

IL-1β

TNF-α

IL-6

MCP-1

Figure 1 | Overview of major inflammatory pathways involved in the pathogenesis of pulmonary arterial hypertension. 
Initial vascular injuries lead to increase in cytokines in vascular cells. After secretion into the bloodstream, cytokines 
promote accumulation of circulating neutrophils and monocytes, and T and B lymphocytes, resulting in increased 
vascular proliferation and damage. TNF-α=tumour necrosis factor α; IL=interleukin, MCP=monocyte chemoattractant 
protein, SMC=smooth muscle cell, CCL=C- C motif chemokine ligand
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endothelial progenitor cells have been identified as 
contributors to angiogenesis dysfunction and devel-
opment of pulmonary hypertension.86 Four different 
types of plexiform lesions have recently been identi-
fied, leading to a theory that bronchial artery anas-
tomoses might contribute to the development of 
plexiform lesions.87

Because bone morphogenetic receptor protein 
2 is crucial for pulmonary vascular homeostasis, 
impaired signalling of this protein is likely a major 
cause of dysfunctional angiogenesis in pulmo-
nary arterial hypertension.88–90 The involvement of 
vascular endothelial growth factor in pulmonary 
arterial hypertension is also particularly important. 
Several studies have highlighted raised plasma levels 
of vascular endothelial growth factor in patients with 
severe pulmonary arterial hypertension.91–94 Also, 
expression of vascular endothelial growth factor 
and vascular endothelial growth factor receptor 2 is 
strongly increased in pulmonary complex vascular 
lesions of patients with pulmonary arterial hyper-
tension.90 95 Changes in other vascular homeostasis 
mediators, such as apelin, the angiopoietin system, 
platelet derived growth factor, nitric oxide, and others 
have also been described.54 96–98 Dysfunctional angi-
ogenesis likely also contributes to the development 
of pulmonary hypertension in chronic thrombo-
embolic pulmonary hypertension.99 Angiogenesis 
is currently not targeted directly by treatments for 
pulmonary arterial hypertension, although new 
treatments targeting bone morphogenetic receptor 
protein 2 or transforming growth factor β signalling 
(reviewed below) will likely have a major effect on 

the function and angiogenesis of pulmonary artery 
endothelial cells.

Perturbations in metabolism
Abnormal metabolic remodelling has emerged as a 
major driver of the pathogenesis of pulmonary arte-
rial hypertension,100 and a key principle in pulmo-
nary arterial hypertension relates to the shift from 
oxidative phosphorylation to glycolysis, known as 
the Warburg effect.100 101 Hallmarks of altered metab-
olism in pulmonary arterial hypertension include 
increased cytoplasmic glycolysis and glutaminolysis 
as well as impairments in mitochondrial biogenesis 
and fatty acid oxidation.102 103

Increased cytoplasmic glycolysis is implicated 
in the development and progression of pulmonary 
arterial hypertension.76 Multiple studies have iden-
tified upregulation of this pathway in pulmonary 
artery endothelial cells104–107 and pulmonary artery 
smooth muscle cells from patients with pulmonary 
arterial hypertension.106 108 These studies describe 
how glucose utilisation largely shifts towards lactate 
generation and away from the tricarboxylic acid cycle 
(figure 3). This metabolic shift leads to a reduction in 
the efficiency of generation of ATP by the mitochon-
drial tricarboxylic acid cycle. Among the molecular 
markers associated with this effect, an increase in 
expression of 6- phosphofructo- 2- kinase/fructose- 
2,6- biphosphatase 3 (PFKFB3) and lactate dehy-
drogenase B is found in lung sections and isolated 
pulmonary artery endothelial cells, and in human 
lung tissue.109–111 Upregulation of lactate production 

Pulmonary
vasculature

Endothelial cell phenotype

1

2

3

Injury
Healthy Apoptotic

Hyperproliferative

Senescent

Progression of
pulmonary artery
hypertension

Apoptotic resistant

Figure 2 | Current theory of change in endothelial cell phenotype in pulmonary artery hypertension and progression 
to irreversible disease. During the early stages of pulmonary artery hypertension, initial endothelial cell injury (shear 
stress, hypoxia, inflammation) leads to endothelial cell apoptosis (1), causing a reduction in pulmonary vessels. 
The remaining endothelial cells become hyperproliferative and resistant to apoptosis (2), leading to formation of 
plexiform lesions. In the terminal stages of pulmonary artery hypertension, endothelial cells become senescent (3), 
making the disease irreversible.
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in pulmonary artery endothelial cells is described in 
vitro.102

As well as changes in glucose metabolism, reduced 
mitochondrial metabolism occurs in pulmonary 
arterial hypertension. Mitochondrial abundance is 
decreased in pulmonary artery endothelial cells and 
pulmonary artery smooth muscle cells,104 112–114 
and reduced oxygen consumption and mitochon-
drial DNA are found in pulmonary artery endothe-
lial cells.104 112 Also, expression, activity, or both, 
of mitochondrial complex I and IV are reduced in 
pulmonary artery endothelial cells104 and small 
pulmonary arteries113 114 from patients with pulmo-
nary arterial hypertension. Increased reactive oxygen 
species production was found in pulmonary artery 
endothelial cells in vitro, associated with a reduc-
tion in antioxidants such as superoxide dismutase 
1 and 2.105 112 Mitochondrial network fragmentation 
is seen in pulmonary artery smooth muscle cells, as 
well as a reduction in mitochondrial respiration.115 

One of the central mechanisms involved in the 
Warburg effect is inhibition of pyruvate dehydroge-
nase.116 This enzyme has a crucial role in catalysing 
mitochondrial production of acetyl- coenzyme A from 
pyruvate, the end product of glycolysis. In pulmo-
nary arterial hypertension, increased pyruvate dehy-
drogenase inhibitory kinase activity is seen in the 
pulmonary arteries of patients with pulmonary arte-
rial hypertension,117–119 leading to uncoupled glyco-
lysis and reduced mitochondrial pyruvate utilisation 
(figure 3).116

Impairments in fatty acid oxidation in pulmo-
nary arterial hypertension are less well character-
ised. Whereas some studies described a reduction in 
fatty acid oxidation mediators in pulmonary artery 
endothelial cells in vitro (eg, 13C-α-ketoglutarate 
and acetyl- CoA acetyltransferase 2),106 112 others 
highlighted an increase in long and medium 
chain free fatty acid products, suggestive of lipo-
toxicity.102 109 Lastly, upregulation of glutamate 
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metabolism is found in both the lung and right 
ventricle in patients with pulmonary arterial hyper-
tension, and this finding has been linked to a propro-
liferative phenotype.109 120–122

Metabolic changes have also been described in 
other cell types. In fibroblasts from patients with 
idiopathic pulmonary arterial hypertension, an 
increase in aerobic glycolysis and in free reduced 
nicotinamide adenine dinucleotide (NADH) and 
NADH/nicotinamide adenine dinucleotide (NAD)+ 
ratios was seen.123 Immune cells in pulmonary 
arterial hypertension are highly glycolytic and the 
cytokines they produce affect mitochondrial func-
tion in the pulmonary vasculature.124 In the right 
ventricle, similar metabolic alterations are described 
and include an increase in aerobic glycolysis and a 
reduction in fatty acid oxidation and mitochondrial 
metabolism (see section on Abnormalities of right 
ventricle for details).

Clinically, patients with pulmonary arterial hyper-
tension have substantial insulin resistance and 
dyslipidaemia.125 Some of these changes have been 
linked to worse outcomes.102 In a subset of patients 
with single nucleotide polymorphisms in genes 
encoding for sirtuin 3 and uncoupling protein 2, 
use of the pyruvate dehydrogenase kinase inhibitor, 
dichloroacetate, was associated with less severe 
pulmonary arterial hypertension.117

Epigenetics and genetics in pulmonary arterial 
hypertension
Major technological advances in genetic and epig-
enomic sequencing have rapidly increased our 
understanding of the contributions of these processes 
to the predisposition, pathobiology, and severity 
of pulmonary arterial hypertension.126 127 Exome 
sequencing and survey of patient cohorts have iden-
tified several mutations likely to have a causal role in 
pulmonary arterial hypertension, including BMPR2, 
EIF2AK4, TBX4, ATP13A3, GDF2, SOX17, AQP1, 
ACVRL1, SMAD9, ENG, KCNK3, and CAV1.126 128–140 
Mutations in BMPR2 are the most commonly occur-
ring and best characterised. BMPR2 mutations have 
been identified in 70- 80% of patients with heritable 
pulmonary arterial hypertension and in 10- 20% with 
idiopathic pulmonary arterial hypertension, and 
have been linked to increased susceptibility, earlier 
disease onset, and increased severity and mortality 
of the disease.126 141

Despite their proposed causal role in pulmonary 
arterial hypertension, these mutations are rare and 
have low penetrance, suggesting that additional 
modifiers or hits are needed to develop pulmonary 
arterial hypertension. Single nucleotide polymor-
phisms are genes that differ from normal genes by one 
nucleotide and can alter the function of the encoded 
protein. Although single nucleotide polymorphisms 
occur in a substantial proportion of the popula-
tion, they could be important modifiers to explain 

susceptibility to pulmonary arterial hypertension or 
responsiveness to treatment.142 For example, single 
nucleotide polymorphisms in sirtuin 3 and uncou-
pling protein 2 play a part in drug metabolism, 
affecting the responsiveness of patients to treatment 
with dichloroacetate.117

Epigenetic modifiers influence how cells control 
gene expression and activity through processes such 
as DNA methylation, acetylation, histone modifica-
tion, and RNA based modifications. DNA methylation 
at a gene promoter typically acts to repress gene tran-
scription.143 Hypermethylation of SOD2 in patients 
with pulmonary arterial hypertension and in rodent 
models of pulmonary hypertension has been shown 
to contribute to proliferative antiapoptotic signal-
ling in pulmonary artery smooth muscle cells.144 
Global differences were also seen in DNA methyl-
ation signatures in pulmonary artery endothelial 
cells and pulmonary artery smooth muscle cells from 
patients with pulmonary hypertension compared 
with cells from control individuals.145 146 An increase 
in DNA methyltransferase 3β expression was found 
in the lungs of pulmonary hypertension patients.147 
Histone acetylation or deacetylation, controlled by 
histone acetyltransferases and histone deacetylases, 
modifies the structure of histones by facilitating or 
inhibiting DNA access to transcriptional machinery. 
Results for inhibition of histone deacetylase in 
pulmonary arterial hypertension have been incon-
sistent, likely representing different contributions 
from various subtypes of histone deacetylase.148 149 
Bromodomain containing protein 4, a member of 
the bromodomain and extra- terminal domain family 
that docks to acetylated histones, is upregulated in 
the lungs, distal pulmonary arteries, and pulmo-
nary artery smooth muscle cells of patients with 
pulmonary arterial hypertension.150 Inhibition of 
bromodomain containing protein 4 is beneficial 
in experimental pulmonary arterial hypertension, 
and a clinical trial of inhibition of bromodomain 
containing protein 4 with apabetalone is currently 
ongoing (NCT04915300).151

Non- coding RNAs, like microRNAs (miRNAs), can 
epigenetically modify DNA to affect many biological 
processes implicated in the pathogenesis of pulmo-
nary arterial hypertension.152–154 For example, 
changes in miR- 424, miR- 503, miR- 204, and miR- 
143 signalling have been linked to changes in cell 
phenotypes and promotion of the pathogenesis of 
pulmonary arterial hypertension.127 Therapeutic 
strategies targeting miRNAs are limited by challenges 
in the pleiotropic effects of miRNAs, safety, and effi-
cacy of delivery.155

Sex hormone signalling in pulmonary arterial 
hypertension
The prevalence of pulmonary arterial hypertension is 
higher in female individuals, with a female to male 
ratio in all forms of pulmonary arterial hypertension 
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of 1.4- 4.1 to 1.156 157 Despite the increased prevalence, 
female patients with pulmonary arterial hyperten-
sion have more favourable haemodynamic changes 
and improved clinical and survival outcomes.158–161 
Furthermore, compared with male patients, female 
patients with pulmonary arterial hypertension have 
better right ventricular function, preserved right 
ventricular ejection fraction, better right ventricular- 
pulmonary artery coupling, and better right 
ventricular response to treatment.159–162 These more 
favourable haemodynamic variables are blunted 
in women after the menopause,158 and premature 
menopause is a major risk factor for the development 
of pulmonary hypertension.163 Sex hormones are 
modifiers of these phenomena. For example, superior 
right ventricular function in women correlates with 
plasma levels of 17β-oestradiol in health and pulmo-
nary arterial hypertension.160 164 165 Conversely, other 
studies have linked oestrogens and their metabolites 
to the development of pulmonary arterial hyperten-
sion,166 167 and higher levels of oestrogen (from drug 
treatments or because of pregnancy) were associated 
with pulmonary arterial hypertension.168–170

Although most studies have focused on the role 
of 17β-oestradiol in pulmonary arterial hyperten-
sion, other sex hormones have been reported to have 
effects. For example, decreased levels of dehydroe-
piandrosterone were associated with the develop-
ment of pulmonary arterial hypertension in men.171 
In men, and in women after the menopause, lower 
levels of dehydroepiandrosterone and higher levels 
of 17β-oestradiol were associated with worse haemo-
dynamic variables and right ventricular function and 
an increased risk of death.172 Another study found 
that low levels of dehydroepiandrosterone sulphate 
and high levels of testosterone correlated with worse 
right ventricular function in male patients with 
pulmonary arterial hypertension.173 Together, these 
data suggest that sex hormones have a vital role in 
the pathogenesis of pulmonary arterial hypertension 
and right ventricular adaptation.

17β-Oestradiol has nuanced cell- dependent and 
context- dependent and temporal effects on the 
pulmonary vasculature. For example, 17β-oestra-
diol increased proliferation of human pulmonary 
artery smooth muscle cells in some studies,167 174 175 
whereas another study reported inhibitory effects of 
17β-oestradiol on proliferation of human pulmonary 
artery smooth muscle cells and no effect on human 
pulmonary artery fibroblasts.176 Conversely, pulmo-
nary artery endothelial cells from mice showed 
differences specific to sex in mitochondrial respira-
tion, proliferation, and response to stress without the 
addition of exogenous sex hormones.177 Pulmonary 
artery endothelial cells derived from male individ-
uals showed increased proliferation compared with 
cells derived from female individuals, and hypoxia 
or use of antimycin A induced an apoptotic response 
in pulmonary artery endothelial cells from female 

individuals but a necrotic response in cells from male 
individuals 178 In addition to the cell specific effects 
of sex hormones, other potentially confounding 
factors include whether the cells were from control 
individuals or patients with pulmonary arterial 
hypertension, and the location within the vascular 
tree where the cells were derived.

In contrast with the effect of 17β-oestradiol on the 
pulmonary vasculature, 17β-oestradiol is uniformly 
protective against right ventricular failure.179 180 We 
recently showed that 17β-oestradiol preserves and 
rescues right ventricular function and increases 
survival in rodent models of pulmonary arterial 
hypertension.54 The protective effects of 17β-oestra-
diol on the right venticle are mediated by oestrogen 
receptor α-mediated upregulation of bone morpho-
genetic receptor protein 2 and apelin in cardiomyo-
cytes.54 These studies suggest that the effect of sex 
hormones might have differing roles in susceptibility 
versus survival and right ventricular adaptation in 
pulmonary arterial hypertension. Three clinical trials 
focusing on sex hormone signalling are currently 
ongoing (see section on Current treatments).

Abnormalities of right ventricle
Right ventricular function predicts survival in 
patients with all forms of pulmonary hyperten-
sion,20 181–184 but the pathophysiology of right 
ventricular failure is poorly understood. Research 
has identified changes in inflammatory mediators, 
neutrophil and macrophage infiltration, microvas-
cular dysfunction, apoptosis, oxidative stress, meta-
bolic shifts, fibrosis, and mechanical alterations as 
mediators of right ventricular failure.184–189 Figure 4 
summarises changes in the right ventricle in pulmo-
nary arterial hypertension.

The first phase of right ventricular adaptation 
to pulmonary arterial hypertension or pulmonary 
hypertension is characterised by compensatory 
right ventricular hypertrophy and an increase in 
contractility of 4- 5- fold in response to its increased 
load.183 190 If severe pulmonary hypertension persists 
or worsens, the right ventricle enters a maladaptive 
phase in which rising wall stress, right ventricular 
dilation, and right ventricle- pulmonary artery 
uncoupling occur, progressing to right ventricular 
failure.183 191 192 What factors predict or result in right 
ventricular failure in some patients but not in others 
is not known.

Clinical manifestations of right ventricular failure 
include dyspnoea and exercise limitation in early 
stages, followed by retention of fluids, arrhythmias, 
syncope, and organ failure, including kidney failure 
and congestive hepatopathy.193–197 Because of the 
interdependence of the right and left ventricles, 
dyssynchronous contraction and right ventricular 
dilation causes bowing of the septum into the left 
ventricle, resulting in impaired left ventricular 
compliance and diastolic filling.198–200 In patients 
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presenting with acute right ventricular failure, 
mortality is estimated at 40% in those requiring 
hospital admission,201–204 with some patients 
presenting with sudden cardiac death.205

Insufficient angiogenesis is thought to be a factor 
in right ventricular maladaptation.206 One theory 
is that vascular rarefaction results in decreased 
delivery of oxygen or metabolic substrates.188 Some 
studies indicated a potential capillary drop- out in 
the right ventricle in experimental pulmonary hyper-
tension.120 207 Studies that used stereology tech-
niques, however, found increased compensatory 
angiogenesis correlating with increased cardiomyo-
cyte volume and an increase in the radius of tissue 
served per vessel in the right ventricle in human end 
stage pulmonary arterial hypertension191 as well as 
in rodent models of pulmonary hypertension.208 209 
In one of these studies, arterial delivery of meta-
bolic substrates was decreased but evidence that 
this effect was functionally significant did not exist, 
because no tissue hypoxia or depletion of key meta-
bolic substrates was found.208 Differences in experi-
mental techniques and the clinical characteristics of 
tissues might explain this discrepancy. More studies 
are needed to determine the role of angiogenesis in 
right ventricular (mal)adaptation.

In healthy adults, the primary energy source is 
fatty acids, accounting for 60- 90% of the substrate 
used for generation of ATP.210 211 In experimental 
pulmonary hypertension, right ventricular meta-
bolic reprogramming leads to substantial shifts 

in substrate utilisation, with increased uptake of 
glucose by the right ventricle and anaerobic glycol-
ysis. This effect has been shown with 2-[18F] fluoro- 
2- deoxy- D- glucose positron emission tomography 
in the lung and right ventricle of patients with 
pulmonary arterial hypertension.212 Concomitantly, 
decreased fatty acid oxidation in the right ventricle 
is seen, resulting in a return to a fetal- like metabolic 
state.208 213–215 This dysregulated fatty acid oxidation 
leads to lipid accumulation and production of toxic 
intermediates, such as ceramide or palmitate.13–17 
Also, this switch towards glucose provides signals 
and building blocks for structural remodelling of the 
heart.216 Because this process cannot be explained 
by substrate deprivation, metabolic reprogram-
ming might result from intrinsic changes within 
the myocytes of the right ventricle.208 Several trials 
focusing on modifying metabolism in pulmonary 
arterial hypertension have been completed or are 
currently ongoing. In a pilot trial, use of metformin 
was associated with better right ventricular function 
and less lipid accumulation.217

Right ventricular fibrosis is known to occur in 
pulmonary arterial hypertension and pulmonary 
hypertension, particularly at right ventricular septal 
insertion points, and is thought to be a major compo-
nent leading to right ventricular failure.218–220 New 
imaging methods with cardiovascular magnetic 
resonance have quantified myocardial extracellular 
volume, a histologically validated marker of diffuse 
interstitial fibrosis.221–223 Extracellular volume 
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Figure 4 | Changes in the right ventricle in pulmonary hypertension. In early pulmonary hypertension, the right 
ventricle undergoes compensatory changes, including angiogenesis, hypertrophy of cardiac myocytes, and 
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measured by cardiovascular magnetic resonance 
correlates with known echocardiographic prog-
nostic markers of right ventricular systolic func-
tion.224 225 Despite substantial progress in this field, 
more research is needed into the biology and patho-
physiology of the right ventricle.226

Other pathophysiological features
As well as the hallmarks of the pathogenesis of pulmo-
nary arterial hypertension, several other features 
occur in the lung, right ventricle, or both, in pulmo-
nary arterial hypertension, such as endothelial- 
to- mesenchymal transition, vascular fibrosis, 
and perturbation of signalling hubs. Mechanisms 
not dependent on transforming growth factor β, 
driven by oxidative stress (eg, neural precursor cell 
expressed developmentally downregulated protein 
9, NEDD9) have recently been found to promote 
endothelial fibrosis and pulmonary artery remodel-
ling. These mechanisms are not described here, but 
are highlighted in recent articles.227–229

Current treatments
The currently available medical treatments for pulmo-
nary arterial hypertension target the three main path-
ways involved in the control of pulmonary vascular 
tone and proliferation: prostacyclin pathway, with 
prostacyclin analogues and prostacyclin receptor 
agonists (epoprostenol, treprostinil, iloprost, selex-
ipag) that induce vasodilation by increasing levels of 
cyclic AMP; nitric oxide pathway, targeted by phos-
phodiesterase inhibitors (sildenafil, tadalafil) and 
by the guanylate cyclase activator, riociguat; and 
endothelin pathway, targeted by receptor antago-
nists (bosentan, ambrisentan, macitentan). These 
drug treatments, or a combination of treatments, 
such as tadalafil and ambrisentan in the AMBITION 
(A Study of First- Line Ambrisentan and Tadalafil 
Combination Therapy in Subjects With Pulmonary 
Arterial Hypertension) trial,230 are the mainstay 
of treatment of pulmonary arterial hypertension, 
and have been shown to benefit patients through 
improvements in exercise capacity, quality of life, 
and time to clinical worsening.231–241 Survival benefit 
has only been found with epoprostenol,16 although 
meta- analyses and post hoc survival analyses have 
suggested survival benefit from upfront combina-
tion dual or triple treatment.242–244 Riociguat is the 
only approved medical treatment for group 4 pulmo-
nary hypertension, and has been shown to improve 
exercise capacity and haemodynamic variables in 
patients with inoperable or recurrent chronic throm-
boembolic pulmonary hypertension.236

Pulmonary artery thromboendarterectomy is 
the treatment of choice for chronic thromboem-
bolic pulmonary hypertension.245 Balloon pulmo-
nary angioplasty can be used in inoperable cases. 
Recently, inhaled treprostinil became the only 
treatment approved by the FDA for patients with 

group 3 pulmonary hypertension after the drug was 
shown to improve exercise capacity in patients with 
pulmonary hypertension caused by interstitial lung 
disease.246 Recent guidelines and reviews provide 
a detailed overview of the treatment strategies for 
pulmonary hypertension.15 247 248

Emerging therapeutic directions
Current treatments for pulmonary arterial hyperten-
sion are efficacious but are limited by their inability 
to reverse pulmonary vascular remodelling. Several 
interventions targeting new pathways involved in 
the pathogenesis of pulmonary arterial hypertension 
are currently in clinical trials, with the aim of estab-
lishing curative treatments. A detailed review has 
recently been published.249

Sex hormone signalling
Sex hormones have a dynamic and intrinsic role in 
the cardiopulmonary unit, regulating tissue home-
ostasis, response to injury, and pathogenesis of the 
disease. Treatments designed to target the synthesis, 
metabolism, or receptor signalling pathways of sex 
hormones, therefore, represent new approaches to 
treat patients with pulmonary arterial hypertension. 
The EDIPHY (Effects of Dehydroepiandrosterone 
in Pulmonary Hypertension) trial, an ongoing 
crossover phase 2 clinical trial (NCT03648385), 
explores whether administration of dehydroepian-
drosterone for 18 weeks affects right ventricular 
function in patients.250 Dehydroepiandrosterone is 
a metabolic precursor of testosterone and oestra-
diol, and is decreased in pulmonary arterial hyper-
tension.171 PHANTOM (Pulmonary Hypertension 
and Anastrozole Trial), a phase 2 trial, determined 
whether inhibiting aromatase and reducing oestra-
diol levels with anastrozole improved the primary 
endpoint of the six minute walk distance test in 
pulmonary arterial hypertension (NCT03229499).251 
Finally, T3PAH (Tamoxifen Therapy to Treat 
Pulmonary Arterial Hypertension) is a phase 2 
trial, determining whether the selective oestrogen 
receptor modulator, tamoxifen, changes right 
ventricular tricuspid annular plane systolic excur-
sion (NCT03528902). The effects of tamoxifen on the 
activity of the oestrogen receptor in the right ventricle 
have not been evaluated, however, and tamoxifen can 
act as an oestrogen receptor agonist in non- gonadal 
tissues (eg, bone).252 253 Preclinical studies showed 
that 17β-oestradiol and oestrogen receptor α are 
protective against right ventricular failure induced 
by pulmonary arterial hypertension. The effects of 
anastrazole and tamoxifen on right ventricular func-
tion are therefore being closely monitored.

Stimulating bone morphogenetic receptor protein 2 
signalling
As previously discussed, disruption of the bone 
morphogenetic receptor protein 2 pathway is 
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implicated in the pathogenesis of pulmonary arte-
rial hypertension, and BMPR2 mutations are the 
most commonly identified form of heritable pulmo-
nary arterial hypertension. Studies have shown 
that conditional deletion of BMPR2 in endothelial 
cells is sufficient to induce spontaneous pulmo-
nary hypertension in mice,254 and that rescue of 
endothelial bone morphogenetic receptor protein 
2 expression reverses experimental pulmonary 
hypertension.255 256 In preclinical trials, FK506 
(tacrolimus) increased bone morphogenetic receptor 
protein 2 signalling.257 FK506 also reduced right 
ventricular fibrosis, stabilised right ventricular capil-
larisation, and improved right ventricular function in 
experimental pulmonary hypertension independent 
of its beneficial effects on pulmonary vascular 
remodelling.258 A phase 2 trial of FK506 showed that 
low doses of FK506 were well tolerated in patients 
with pulmonary arterial hypertension with improve-
ments in walk distance and in biomarkers for right 
ventricular function.259 However, phase 2b or phase 
3 trials are not currently ongoing.

Recent studies highlighted the potential role of 
sotatercept, a fusion protein that acts as a ligand 
trap for transforming growth factor β members and 
that restores the balance between growth promoting 
and growth inhibiting bone morphogenetic protein 
pathways.260 A multicentre, randomised, double 
blind, phase 2 trial of sotatercept for background 
treatment in patients with pulmonary arterial hyper-
tension showed an improvement in exercise capacity 
and reduction in pulmonary vascular resistance 
at 24 weeks.260 Several phase 3 trials of sotater-
cept are underway or completed (NCT04576988, 
NCT04811092, and NCT04896008), with the 
results of the STELLAR (A Study of Sotatercept for 
the Treatment of Pulmonary Arterial Hypertension) 
trial showing beneficial effects on exercise capacity 
and a reduction in pulmonary vascular resistance, 
resulting in a breakthrough therapy designation by 
the FDA, and a priority medicines designation by the 
European Medicines Agency.261

Rare mutations in GDF2, the gene encoding bone 
morphogenetic protein type 9, have been identified 
in patients with heritable pulmonary arterial hyper-
tension.262 Reduced activity and plasma levels of 
bone morphogenetic protein types 9 and 10, the 
main ligands of activin receptor- like kinase 1- bone 
morphogenetic receptor protein 2 heterocomplexes, 
were found to be reduced in some patients with 
pulmonary arterial hypertension, including those 
not carrying GDF2 mutations.139 In some studies, 
bone morphogenetic protein 9−/− or wild- type mice 
given anti- bone morphogenetic protein 9 antibodies 
were protected from pulmonary hypertension, and 
inhibition of bone morphogenetic proteins 9 and 10 
with a ligand trap in rats caused regression of pulmo-
nary hypertension.263 However, other studies showed 
the contradictory finding that administration of bone 

morphogenetic protein 9 prevented and reversed 
established pulmonary hypertension in transgenic 
mice with spontaneous pulmonary hypertension 
caused by a mutation in the bone morphogenetic 
receptor protein 2 locus, as well as in rat models of 
pulmonary arterial hypertension.75 Together, these 
studies suggest that bone morphogenetic proteins 9 
and 10 are possible new therapeutic targets in pulmo-
nary hypertension, but the precise role of dysfunc-
tional bone morphogenetic protein signalling and 
balance of bone morphogenetic protein ligands with 
the bone morphogenetic receptor protein 2 receptor 
needs to be further clarified.

Tyrosine kinase inhibition
The cancer hypothesis of pulmonary arterial hyper-
tension, suggesting that pulmonary arterial hyper-
tension and cancer share common features, such 
as hyperproliferation, apoptosis resistance, and 
metabolic reprogramming, has led to the explora-
tion of repurposing treatments already tested in 
the treatment of malignancies.249 Among these, 
tyrosine kinase inhibitors, already approved and in 
use as antineoplastic agents in numerous types of 
cancer, are postulated to be beneficial in the treat-
ment of pulmonary arterial hypertension by inhib-
iting kinases related to cell growth and suppressing 
pulmonary vascular angioprolilferative remodelling, 
and have been beneficial in preventing or reversing 
experimental pulmonary arterial hypertension.264–266

A randomised controlled trial of imatinib in 
pulmonary arterial hypertension showed improved 
exercise capacity and haemodynamic variables, but 
serious adverse events included several subdural 
haematomas, and discontinuation of the study drug 
was common.267 In contrast, a pilot trial of sorafenib 
in pulmonary arterial hypertension found improve-
ment in right ventricular ejection fraction and exer-
cise tolerance in some patients, but a concerning 
decrease in median cardiac index.268 A phase 2 trial 
of nilotinib (AMN107) was stopped early because 
of serious adverse events and was not powered for 
efficacy. Differences in the effects of tyrosine kinase 
inhibitors are likely because of the different tyrosine 
kinases being targeted. Several trials with oral or 
inhaled tyrosine kinase inhibitors are currently 
ongoing, including phase 2 trials of imatinib 
(NCT04416750) and seralutinib (NCT04456998).269 
270 Seralutinib (targeting platelet derived growth 
factor receptor, colony stimulating factor 1 receptor, 
and c- KIT) was recently announced in a press release 
to have met the phase 2 primary endpoint of a 
decrease in pulmonary vascular resistance, with 
publication still pending.271

Targeting metabolism
Another main target is cellular metabolism. One 
strategy to reverse metabolic remodelling in pulmo-
nary arterial hypertension is to target glycolytic 
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inhibitors. Dichloroacetate, a pyruvate dehydroge-
nase kinase inhibitor, has shown promise by reducing 
mean pulmonary artery pressure and pulmonary 
vascular resistance and improving walking capacity 
in patients with pulmonary arterial hyperten-
sion.102 110 117 144 A pilot study showed improvement 
in haemodynamic variables in genetically suscep-
tible patients.117

Improving fatty acid oxidation is another strategy to 
reduce pulmonary arterial hypertension. Metformin, 
an antihyperglycaemic agent, reduces lipid depo-
sition in the right ventricle of BMPR2 mutant trans-
genic mouse models.272 Recently, a phase 2 clinical 
trial in patients with pulmonary arterial hyperten-
sion showed a statistically significant improvement 
in right ventricular fractional area and a reduction 
in right ventricular triglyceride content.217 Finally, 
treatments aimed at improving mitochondrial func-
tion have shown promising results. Supplementation 
with coenzyme Q improved mitochondrial respi-
ration and echocardiographic markers of right 
ventricular function in individuals with pulmonary 
arterial hypertension.273 Pioglitazone, a peroxisome 
proliferator activated receptor γ agonist, restored 
mitochondrial function, reversed pulmonary arterial 
hypertension, and prevented right ventricular failure 
in rat models.274

In summary, several potentially effective new drug 
treatment strategies for pulmonary arterial hyper-
tension are being explored, with several of these 
treatments already being tested in clinical trials. In 
particular, sotatercept has generated robust phase 
2 data and a press release of phase 3 results.260 261 
Also, non- drug treatments, such as pulmonary artery 
denervation, are currently being studied and seem 
promising.275

Questions for future research
Despite improvements in our understanding of 
pulmonary arterial hypertension, several questions 
remain. The development of curative treatments for 
pulmonary arterial hypertension and for other types 
of pulmonary hypertension is needed. Furthermore, 
the key initiating events in pulmonary arterial 
hypertension and pulmonary hypertension and in 
what combination they occur are still unclear. Also 
unclear is whether pulmonary arterial hypertension 
is a systemic rather than a cardiopulmonary disease, 
and whether pre- existing metabolic, inflamma-
tory, and genetic and epigenetic abnormalities can 
predispose some individuals to develop pulmonary 
arterial hypertension or pulmonary hypertension. 
Regardless, the critical point at which a patientde-
velops or does not develop pulmonary arterial hyper-
tension or pulmonary hypertension is not defined. 
Molecularly, which cell types are the most critically 
injured is still debated, and the exact mechanisms 
are speculative because most work on the cause of 
pulmonary arterial hypertension and pulmonary 
hypertension has been in preclinical animal models 
(which do not replicate human disease completely), 
and patient tissues from early stages of the disease 
are not available.

Finally, despite its importance for patient survival 
and mortality, no treatments directed at the right 
ventricle currently exist. Research is only beginning 
to molecularly define right ventricular failure and 
how it progresses. The development of powerful new 
omics based approaches and improved access and 
affordability of database repositories increases the 
likelihood that we will identify new cell populations 
in the pulmonary circulation that are critical for the 
development of pulmonary arterial hypertension 

Table 2 | Selected current gaps in knowledge of pulmonary arterial hypertension
Type Knowledge gaps

Better understanding of start and 
progression of the disease

What are the key initiating factors of pulmonary arterial hypertension and their combination?
Are there other conditions predispositioning individuals to developing pulmonary arterial hypertension?
Is there a critical point where pulmonary vascular changes become irreversible?
Is pulmonary arterial hypertension a cardiopulmonary or systemic disease?

Better understanding of molecular 
mechanisms

Which are the most critical cell types mediating development of pulmonary arterial hypertension? Are 
these the same for all patients and stages of the disease?
Is there a hierarchy of molecular mechanisms initiating and perpetuating pulmonary arterial hyperten-
sion?

Refining treatment approaches Develop new disease modifying treatments for pulmonary arterial hypertension and other types of 
pulmonary hypertension
Identify optimal combinations and hierarchies for established and new treatments (eg, where do new 
treatments, such as sotatercept and tyrosine kinase inhibitors, fit? Do all patients need to receive dis-
ease modifying treatments and, if so, at what stage?)
Develop more treatments for group 2, 3, and 5 pulmonary hypertension
Is there a role for personalised treatment approaches in pulmonary arterial hypertension and pulmonary 
hypertension?
Does treating individuals with mean pulmonary artery pressure of 21- 25 mm Hg or pulmonary vascular 
resistance of >2 Woods units, or both, with pulmonary vasodilators mean better outcomes? Are more 
monitoring or diagnostic approaches needed for these individuals?
Identify and refine the role of non- drug treatments (eg, pulmonary artery denervation, exercise, nutri-
tional interventions)
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and pulmonary hypertension, define new signalling 
networks, and more accurately determine intercel-
lular and intersystem communication in the patho-
genesis of pulmonary arterial hypertension and 
pulmonary hypertension. These advances will ulti-
mately lead to the development of new molecular 
targets and prognostic biomarkers. Algorithms based 
on machine learning will also help identify prog-
nostic factors for pulmonary arterial hypertension 
and pulmonary hypertension. This approach will 
allow investigators to rapidly process large amounts 
of data, and despite the heterogeneity of the disease, 
use an unbiased approach to identify new patterns 
and indicators of the prognosis, progression, and 
outcomes of pulmonary hypertension. Clinically, 
more research is needed to clarify whether treating 
people according to new definitions means better 
outcomes. Also, the role and place of new treatments 
needs to be defined. Table 2 summaries the current 
gaps in our knowledge.

Conclusions
Over the past two decades, substantial progress 
has been made in understanding the molecular 
basis and clinical characteristics of pulmonary 
arterial hypertension and pulmonary hypertension. 
Pathophysiologically relevant and clinically targ-
etable changes exist in the areas of inflammation and 
immune dysregulation, angiogenesis, metabolism, 
epigenetics and genetics, as well as sex hormone 
signalling. Major progress has also been made in 
identifying mediators of right ventricular adapta-
tion and maladaptation in pulmonary hypertension. 
New treatment strategies focusing on these areas are 
promising and could change how we think about 
treatment in the near future.
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