Skip to main content
Log in

Immunomodulators in Inflammatory Bowel Disease: An Emerging Role for Biologic Agents

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Crohn’s disease and ulcerative colitis, collectively referred to as inflammatory bowel diseases (IBD), are the result of an aberrant immune response to ubiquitous antigens in a genetically susceptible host. In the past, treatment has focused on immunosuppression with the aim of achieving symptom-free remission. Over the last two decades, with a better understanding of the underlying pathomechanisms and an increased knowledge of the natural disease course, mucosal healing (the endoscopic absence of visible inflammation) has become the target of therapy. Anti-tumor necrosis factor (TNF)-α therapy was introduced in the late 1990s and, for the first time, targeted and effective medication became available. However, these medications are not without significant side effects, and long-term efficacy is only achieved in about one third of patients. Alongside anti-TNF-α agents, a variety of other drugs targeting different aspects of the immune system will become available over the next few years. This review aims to provide a brief summary of immunologic pathways involved in IBD and shows where current and new drugs fit into these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Packey CD, Sartor RB. Interplay of commensal and pathogenic bacteria, genetic mutations, and immunoregulatory defects in the pathogenesis of inflammatory bowel diseases. J Intern Med. 2008;263:597–606.

    Article  PubMed  CAS  Google Scholar 

  2. Sartor RB. Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3:390–407.

    Article  PubMed  CAS  Google Scholar 

  3. Peyrin-Biroulet L, Lemann M. Review article: remission rates achievable by current therapies for inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33:870–9.

    Article  PubMed  CAS  Google Scholar 

  4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  PubMed  CAS  Google Scholar 

  5. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer KH, et al. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD) [see comments]. Clin Exp Immunol. 1995;102:448.

    Article  PubMed  CAS  Google Scholar 

  6. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8:411–20.

    Article  PubMed  CAS  Google Scholar 

  7. Parkes M. Evidence from genetics for a role of autophagy and innate immunity in IBD pathogenesis. Dig Dis. 2012;30:330–3.

    Article  PubMed  Google Scholar 

  8. Roberts RL, Gearry RB, Hollis-Moffatt JE, Miller AL, Reid J, Abkevich V, et al. IL23R R381Q and ATG16L1 T300A are strongly associated with Crohn’s disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am J Gastroenterol. 2007;102:2754–61.

    Article  PubMed  CAS  Google Scholar 

  9. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3:331–41.

    Article  PubMed  CAS  Google Scholar 

  10. Rescigno M, Di Sabatino A. Dendritic cells in intestinal homeostasis and disease. J Clin Invest. 2009;119:2441–50.

    Article  PubMed  CAS  Google Scholar 

  11. Marsal J, Agace WW. Targeting T-cell migration in inflammatory bowel disease. J Intern Med. 2012;272:411–29.

    Article  PubMed  CAS  Google Scholar 

  12. Baumgart DC, Metzke D, Schmitz J, Scheffold A, Sturm A, Wiedenmann B, et al. Patients with active inflammatory bowel disease lack immature peripheral blood plasmacytoid and myeloid dendritic cells. Gut. 2005;54:228–36.

    Article  PubMed  CAS  Google Scholar 

  13. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology. 2005;129:50–65.

    Article  PubMed  CAS  Google Scholar 

  14. Maynard CL, Weaver CT. Intestinal effector T cells in health and disease. Immunity. 2009;31:389–400.

    Article  PubMed  CAS  Google Scholar 

  15. Breese EJ, Michie CA, Nicholls SW, Murch SH, Williams CB, Domizio P, et al. Tumor necrosis factor alpha-producing cells in the intestinal mucosa of children with inflammatory bowel disease. Gastroenterology. 1994;106:1455–66.

    PubMed  CAS  Google Scholar 

  16. Reinecker HC, Steffen M, Witthoeft T, Pflueger I, Schreiber S, MacDermott RP, et al. Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease. Clin Exp Immunol. 1993;94:174–81.

    Article  PubMed  CAS  Google Scholar 

  17. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  PubMed  CAS  Google Scholar 

  18. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003;52:65–70.

    Article  PubMed  CAS  Google Scholar 

  19. Siakavellas SI, Bamias G. Role of the IL-23/IL-17 axis in Crohn’s disease. Discov Med. 2012;14:253–62.

    PubMed  Google Scholar 

  20. Girardin A, McCall J, Black MA, Edwards F, Phillips V, Taylor ES, Reeve AE, Kemp RA. Inflammatory and regulatory T cells contribute to a unique immune microenvironment in tumor tissue of colorectal cancer patients. Int J Cancer. 2013;132:1842–50.

    Article  PubMed  CAS  Google Scholar 

  21. Neurath MF, Travis SP. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut. 2012;61:1619–35.

    Article  PubMed  CAS  Google Scholar 

  22. Danese S. New therapies for inflammatory bowel disease: from the bench to the bedside. Gut. 2012;61:918–32.

    Article  PubMed  CAS  Google Scholar 

  23. Truelove SC, Witts LJ. Cortisone in ulcerative colitis; preliminary report on a therapeutic trial. Br Med J. 1954;2:375–8.

    Article  PubMed  CAS  Google Scholar 

  24. Lennard-Jones JE, Longmore AJ, Newell AC, Wilson CW, Jones FA. An assessment of prednisone, salazopyrin, and topical hydrocortisone hemisuccinate used as out-patient treatment for ulcerative colitis. Gut. 1960;1:217–22.

    Article  PubMed  CAS  Google Scholar 

  25. Malchow H, Ewe K, Brandes JW, Goebell H, Ehms H, Sommer H, et al. European Cooperative Crohn’s Disease Study (ECCDS): results of drug treatment. Gastroenterology. 1984;86:249–66.

    PubMed  CAS  Google Scholar 

  26. Summers RW, Switz DM, Sessions JT Jr, Becktel JM, Best WR, Kern F Jr, et al. National Cooperative Crohn’s Disease Study: results of drug treatment. Gastroenterology. 1979;77:847–69.

    PubMed  CAS  Google Scholar 

  27. Ardite E, Panes J, Miranda M, Salas A, Elizalde JI, Sans M, et al. Effects of steroid treatment on activation of nuclear factor kappaB in patients with inflammatory bowel disease. Br J Pharmacol. 1998;124:431–3.

    Article  PubMed  CAS  Google Scholar 

  28. Grilli M, Chiu JJ, Lenardo MJ. NF-kappa B and Rel: participants in a multiform transcriptional regulatory system. Int Rev Cytol. 1993;143:1–62.

    Article  PubMed  CAS  Google Scholar 

  29. Marehbian J, Arrighi HM, Hass S, Tian H, Sandborn WJ. Adverse events associated with common therapy regimens for moderate-to-severe Crohn’s disease. Am J Gastroenterol. 2009;104:2524–33.

    Article  PubMed  Google Scholar 

  30. Rahier JF, Ben-Horin S, Chowers Y, Conlon C, De Munter P, D’Haens G, et al. European evidence-based Consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J Crohn’s Colitis. 2009;3:47–91.

    Article  CAS  Google Scholar 

  31. Elion GB. The purine path to chemotherapy. Science. 1989;244:41–7.

    Article  PubMed  CAS  Google Scholar 

  32. Miheller P, Lakatos PL. Thiopurines in Crohn’s disease, is there something new? Expert Opin Drug Metab Toxicol. 2010;6:1505–14.

    Article  PubMed  CAS  Google Scholar 

  33. Tiede I, Fritz G, Strand S, Poppe D, Dvorsky R, Strand D, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–45.

    PubMed  CAS  Google Scholar 

  34. Kandiel A, Fraser AG, Korelitz BI, Brensinger C, Lewis JD. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut. 2005;54:1121–5.

    Article  PubMed  CAS  Google Scholar 

  35. Beaugerie L, Brousse N, Bouvier AM, Colombel JF, Lemann M, Cosnes J, et al. Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: a prospective observational cohort study. Lancet. 2009;374:1617–25.

    Article  PubMed  CAS  Google Scholar 

  36. Siegel CA, Marden SM, Persing SM, Larson RJ, Sands BE. Risk of lymphoma associated with combination anti-tumor necrosis factor and immunomodulator therapy for the treatment of Crohn’s disease: a meta-analysis. Clin Gastroenterol Hepatol. 2009;7:874–81.

    Article  PubMed  CAS  Google Scholar 

  37. de Boer NK, Derijks LJ, Gilissen LP, Hommes DW, Engels LG, de-Boer SY, et al. On tolerability and safety of a maintenance treatment with 6-thioguanine in azathioprine or 6-mercaptopurine intolerant IBD patients. World J Gastroenterol. 2005;11:5540–4.

    PubMed  Google Scholar 

  38. Bradford K, Shih DQ. Optimizing 6-mercaptopurine and azathioprine therapy in the management of inflammatory bowel disease. World J Gastroenterol. 2011;17:4166–73.

    Article  PubMed  CAS  Google Scholar 

  39. Fraser AG, Orchard TR, Jewell DP. The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review. Gut. 2002;50:485.

    Article  PubMed  CAS  Google Scholar 

  40. McDonald JW, Tsoulis DJ, Macdonald JK, Feagan BG. Methotrexate for induction of remission in refractory Crohn’s disease. Cochrane Database Syst Rev. 2012;12:CD003459.

    PubMed  Google Scholar 

  41. Johnston A, Gudjonsson JE, Sigmundsdottir H, Ludviksson BR, Valdimarsson H. The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol. 2005;114:154–63.

    Article  PubMed  CAS  Google Scholar 

  42. Brody M, Bohm I, Bauer R. Mechanism of action of methotrexate: experimental evidence that methotrexate blocks the binding of interleukin 1 beta to the interleukin 1 receptor on target cells. Eur J Clin Chem Clin Biochem. 1993;31:667–74.

    PubMed  CAS  Google Scholar 

  43. Ng SC, Chan FK, Sung JJ. Review article: the role of non-biological drugs in refractory inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33:417–27.

    Article  PubMed  CAS  Google Scholar 

  44. Hanauer S, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomized trial. Lancet. 2002;359:1541.

    Article  PubMed  CAS  Google Scholar 

  45. Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, Van Hogezand RA, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med. 1999;340:1398.

    Article  PubMed  CAS  Google Scholar 

  46. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2005;353:2462–76.

    Article  PubMed  CAS  Google Scholar 

  47. Sandborn WJ, Hanauer SB. Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis. 1999;5:119–33.

    Article  PubMed  CAS  Google Scholar 

  48. Winter G, Harris WJ. Humanized antibodies. Immunol Today. 1993;14:243–6.

    Article  PubMed  CAS  Google Scholar 

  49. Peyrin-Biroulet L, Deltenre P, de Suray N, Branche J, Sandborn WJ, Colomber JF. Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: meta-analysis of placebo-controlled trials. Clin Gastroenterol Hepatol. 2008;6:644–53.

    Article  PubMed  CAS  Google Scholar 

  50. Nielsen OH, Seidelin JB, Munck LK, Rogler G. Use of biological molecules in the treatment of inflammatory bowel disease. J Intern Med. 2011;270:15–28.

    Article  PubMed  CAS  Google Scholar 

  51. D’Haens G, Baert F, van Assche G, Caenepeel P, Vergauwe P, Tuynman H, et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet. 2008;371:660–7.

    Article  PubMed  Google Scholar 

  52. Rutgeerts P, Feagan BG, Lichtenstein GR, Mayer LF, Schreiber S, Colombel JF, et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology. 2004;126:402–13.

    Article  PubMed  CAS  Google Scholar 

  53. Rutgeerts P, Van Assche G, Sandborn WJ, Wolf DC, Geboes K, Colombel JF, et al. Adalimumab induces and maintains mucosal healing in patients with Crohn’s disease: data from the EXTEND trial. Gastroenterology. 2012;142(1102–1111):e1102.

    Article  Google Scholar 

  54. Hebuterne X, Lemann M, Bouhnik Y, Dewit O, Dupas JL, Mross M, et al. Endoscopic improvement of mucosal lesions in patients with moderate to severe ileocolonic Crohn’s disease following treatment with certolizumab pegol. Gut. 2013;62:201–8.

    Article  PubMed  CAS  Google Scholar 

  55. Papadakis KA, Targan SR. Tumor necrosis factor: biology and therapeutic inhibitors. Gastroenterology. 2000;119:1148–57.

    Article  PubMed  CAS  Google Scholar 

  56. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411–52.

    Article  PubMed  CAS  Google Scholar 

  57. Ardizzone S, Bianchi Porro G. Biologic therapy for inflammatory bowel disease. Drugs. 2005;65:2253–86.

    Article  PubMed  CAS  Google Scholar 

  58. Sandborn WJ, Hanauer SB, Katz S, Safdi M, Wolf DG, Baerg RD, et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology. 2001;121:1088–94.

    Article  PubMed  CAS  Google Scholar 

  59. Van den Brande JM, Braat H, van den Brink GR, Versteeg HH, Bauer CA, Hoedemaeker I, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology. 2003;124:1774–85.

    Article  PubMed  Google Scholar 

  60. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001;345:1098–104.

    Article  PubMed  CAS  Google Scholar 

  61. Veereman-Wauters G, de Ridder L, Veres G, Kolacek S, Fell J, Malmborg P, et al. Espghan ibd porto group commentary on risk of infection and prevention in pediatric ibd patients. J Pediatr Gastroenterol Nutr. 2012.

  62. Irving PM, Gearry RB, Sparrow MP, Gibson PR. Review article: appropriate use of corticosteroids in Crohn’s disease. Aliment Pharmacol Ther. 2007;26:313–29.

    Article  PubMed  CAS  Google Scholar 

  63. Jones JL, Loftus EV Jr. Lymphoma risk in inflammatory bowel disease: is it the disease or its treatment? Inflamm Bowel Dis. 2007;13:1299–307.

    Article  PubMed  Google Scholar 

  64. Hansen RA, Gartlehner G, Powell GE, Sandler RS. Serious adverse events with infliximab: analysis of spontaneously reported adverse events. Clin Gastroenterol Hepatol. 2007;5:729–35.

    Article  PubMed  Google Scholar 

  65. Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J, Guzzo C, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367:1519–28.

    Article  PubMed  CAS  Google Scholar 

  66. Danese S. Nonimmune cells in inflammatory bowel disease: from victim to villain. Trends Immunol. 2008;29:555–64.

    Article  PubMed  CAS  Google Scholar 

  67. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  68. Sandborn WJ, Colombel JF, Enns R, Feagan BG, Hanauer SB, Lawrance IC, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–25.

    Article  PubMed  CAS  Google Scholar 

  69. Ford AC, Sandborn WJ, Khan KJ, Hanauer SB, Talley NJ, Moayyedi P. Efficacy of biological therapies in inflammatory bowel disease: systematic review and meta-analysis. Am J Gastroenterol. 2011;106:644–59 (quiz 660).

    Google Scholar 

  70. Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med. 2005;352:2499–507.

    Article  PubMed  CAS  Google Scholar 

  71. Feagan BG, Greenberg GR, Wild G, Fedorak RN, Pare P, McDonald JW, et al. Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin Gastroenterol Hepatol. 2008;6:1370–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements and Disclosures

Research by Roslyn Kemp and Elliott Dunn is supported by the Jack Thomson Arthritis Fund and the H.S. and J.C. Anderson Trust. Michael Schultz has received speaker fees and is a member of the AbbVie Ltd. and Janssen-Cilag Pty Ltd. New Zealand Inflammatory Bowel Disease Advisory Boards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, R., Dunn, E. & Schultz, M. Immunomodulators in Inflammatory Bowel Disease: An Emerging Role for Biologic Agents. BioDrugs 27, 585–590 (2013). https://doi.org/10.1007/s40259-013-0045-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0045-2

Keywords

Navigation